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An efficient algorithm for hydrodynamical interaction of many deformable drops
subject to shear flow at small Reynolds numbers with triply periodic boundaries is
developed. The algorithm, at each time step, is a hybrid of boundary-integral and
economical multipole techniques, and scales practically linearly with the number of
drops N in the range N < 1000, for N4 ∼ 103 boundary elements per drop. A new
near-singularity subtraction in the double layer overcomes the divergence of velocity
iterations at high drop volume fractions c and substantial viscosity ratio λ. Extensive
long-time simulations for N = 100–200 and N4 = 1000–2000 are performed up to
c = 0.55 and drop-to-medium viscosity ratios up to λ = 5, to calculate the non-
dimensional emulsion viscosity µ∗ = Σ12/(µeγ̇), and the first N1 = (Σ11 − Σ22)/(µe|γ̇|)
and second N2 = (Σ22 − Σ33)/(µe|γ̇|) normal stress differences, where γ̇ is the shear
rate, µe is the matrix viscosity, and Σij is the average stress tensor. For c = 0.45 and
0.5, µ∗ is a strong function of the capillary number Ca = µe|γ̇|a/σ (where a is the
non-deformed drop radius, and σ is the interfacial tension) for Ca� 1, so that most
of the shear thinning occurs for nearly non-deformed drops. For c = 0.55 and λ = 1,
however, the results suggest phase transition to a partially ordered state at Ca 6 0.05,
and µ∗ becomes a weaker function of c and Ca; using λ = 3 delays phase transition
to smaller Ca. A positive first normal stress difference, N1, is a strong function of Ca;
the second normal stress difference, N2, is always negative and is a relatively weak
function of Ca. It is found at c = 0.5 that small systems (N ∼ 10) fail to predict
the correct behaviour of the viscosity and can give particularly large errors for N1,
while larger systems N > O(102) show very good convergence. For N ∼ 102 and
N4 ∼ 103, the present algorithm is two orders of magnitude faster than a standard
boundary-integral code, which has made the calculations feasible.

1. Introduction
Emulsions, i.e. dispersions of one immiscible liquid in another liquid, arise in a wide

range of applications, including food processing, oil recovery and transportation, and
pharmaceutical manufacturing. For many years, progress in understanding emulsion
rheology was mainly empirical and limited to conditions of particular experiments.
However, it is important to understand, from first principles, how microstructural
details affect emulsion rheology. Among the most important factors are drop volume
fraction and drop deformation. Recent progress in computational methods and more
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powerful computer resources have made possible the examination of the effects that
these factors have on emulsion microstructure and rheology.

For a two-dimensional model, Pozrikidis & coworkers used a direct boundary-
integral method with 25–50 drops to simulate spatially homogeneous shear flows (Li,
Charles & Pozrikidis 1996; Charles & Pozrikidis 1998; Breyiannis & Pozrikidis 2000)
and wall-bounded and channel flows (Zhou & Pozrikidis 1993, 1994; Li & Pozrikidis
2000) at moderate area fractions. In the three-dimensional case, Kennedy, Pozrikidis
& Skalak (1994) calculated the deformation and rheological response of a single drop
in a simple shear flow, to find the effective viscosity and normal stress differences
in dilute emulsions and extend earlier work (Cox 1969; Frankel & Acrivos 1970) to
finite deformations. Mo & Sangani (1994) calculated the viscosity of concentrated
random static emulsions of spherical drops. Pozrikidis (1993) simulated shear flow of
deformable drops in ordered, three-dimensional flow (one drop per periodic cell) at
moderate volume fractions by a boundary-integral method; his study complements
the earlier work of Sangani & Lu (1987) on the viscosity of ordered emulsions of
spherical drops in a simple cubic array.

Loewenberg & Hinch (1996) were the first to dynamically simulate shear flow of
more realistic, disordered spatially homogeneous emulsions of three-dimensional de-
formable drops. They implemented a direct point-to-point boundary-integral method,
with O(N2N24) scaling (where N is the number of drops in a periodic cell, and N4 is
the number of triangular boundary elements per drop), and used N = 12 drops with
N4 = 320 boundary elements per drop to calculate the effective emulsion viscosity
and normal stress differences for up to 30% drop volume fractions. Using the same
implementation, Loewenberg (1998) presented some additional calculations at 30%
concentration and analysed the usefulness of the mean-field model for rheological
properties and critical breakup conditions.

In the present work, we make the same physical assumptions (Stokes flow, constant
temperature and surface tension, no surfactants, equi-sized drops, Newtonian drop
and matrix fluids) as in the papers of Loewenberg & Hinch (1996) and Loewenberg
(1998). Our focus is on the rheological properties of spatially homogeneous three-
dimensional emulsions at very high drop volume fractions, up to 55%, in a wide range
of capillary numbers Ca, including the practical but difficult case of drops with small
deformations. Such information bridges the gap between moderately concentrated
emulsions and foams and reveals a number of qualitatively new features absent at low
concentrations. Using large systems (N > O(102)) is important at high concentrations,
as is using fine surface discretizations (N4 ∼ 103), and a direct O(N2N24) boundary-
integral method would not be a practical option for dynamical simulations in this
case. Our approach is instead based on the recent algorithm of Zinchenko & Davis
(2000, hereafter referred to as paper I) for multidrop sedimentation and is a hybrid of
the boundary-integral and economical multipole techniques (Zinchenko 1994, 1998),
with multipoles playing the major role. An additional challenge, however, is that the
basic periodic cell must change with time in shear-flow simulations, and the present
far-field calculation techniques are thus necessarily different from those in paper I.

In § 2, the boundary-integral formulation is described. In § 3, we offer a new
near-singularity subtraction technique for double-layer boundary integrals, which
was crucial to overcome the divergence of velocity iterations in our simulations at
high concentrations and substantial viscosity contrast between the drops and the
surrounding matrix, without a loss of efficiency. In § 4, the scheme adapted from
paper I for multipole-accelerated calculation of boundary integrals is outlined, with
a particular emphasis on the differences between the shear-flow and sedimentation
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cases. Appendix A presents the passive mesh stabilization algorithm used to maintain
the quality of drop triangulations in dynamical simulations. Techniques for dynamical
calculations of the far-field parts of the boundary integrals (i.e. after subtracting off
the nearest-image contributions from the periodic Green’s function) are described in
Appendices B, C, and D. The known solutions in the dilute limit (Kennedy et al.
1994) and for periodic emulsions of spherical drops at high concentrations (Sangani
& Lu 1987) provide tests for our code in § 5.1. Results for the dynamics of random
concentrated emulsions are presented in § 5.2. All calculations were performed on DEC
500au and DEC 600au (500 and 600 MHz) single-processor UNIX workstations, or
on DELL Dimension Pentiums III (733 and 1000 MHz).

2. Boundary-integral formulation
Consider an infinite set of deformable drops of viscosity µ′ freely suspended in

a medium of viscosity µe = µ′/λ and subject to a steady mean shear flow uo∞(x) =
(γ̇x2, 0, 0), where γ̇ > 0 is the shear rate. An equivalent radius of non-deformed drops
is ao (assumed, for simplicity, to be the same for all drops) and the capillary number
is Ca = µeγ̇ao/σ, where σ is the constant interfacial tension. The drop system is
obtained from the basic configuration of N drops with surface centroids xc1, . . . , x

c
N in

the cell V by triply periodic continuation into the whole space with periods e1, e2,
e3. Initially, at t = 0, vectors e1, e2, e3 form an orthonormal basis eo1, e

o
2, e

o
3, and the

periodic cell V is then a unit cube, if the cell side L is taken as a characteristic length.
For t > 0, the periodic cell is deformed by the mean flow and repeats itself in a cyclic
manner, so, without loss of generality,

e1 = eo1, e2 = eo2 + γe1, e3 = eo3,

γ = γ̇t− [γ̇t+ 1
2

] ∈ [− 1
2
, 1

2

)
,

}
(2.1)

and V = {ξiei, |ξi| 6 1/2} (figure 1). The fluid velocity is expressed as u(x) =
uo∞(x) + ũ(x), where ũ(x) is triply periodic and is assumed to have zero mean 〈ũ〉
over V , without loss of generality. A system of boundary-integral equations for u(x)
on drop surfaces S1, S2, . . . , SN is facilitated through the use of the periodic non-
dimensional Green functions G (k)(x), k = 1, 2, 3 (e.g. Hasimoto 1959; see Appendix B
for more details) and the corresponding stress tensors τ (k)(x). With the normalization
used herein, the vectors G (k)(x) and the corresponding pressures q(k)(x) satisfy

∇2G (k)(x)− ∇q(k)(x) = ∇ · τ (k)(x) =
∑
m

δ(x− P(m))eok, (2.2)

where the summation is over all the lattice points P(m) = m1e1 + m2e2 + m3e3 with
integer m1, m2, m3. Unlike G (k)(x), the pressure q(k)(x) and stress tensor

τ (k) = −q(k)I + (∇+ ∇T )G (k) (2.3)

are linear plus periodic functions. With 〈ũ〉 = 0 and γ̇L as the velocity scale, the non-
dimensional fluid velocity on the drop surfaces is uniquely determined by a system of
non-dimensional boundary-integral equations:

uk(y) =
2(λ− 1)

λ+ 1

N∑
β=1

∫
Sβ

u(x) · τ (k)(x− y) · n(x) dSx + Fk(y), k = 1, 2, 3. (2.4)
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Figure 1. On the shear flow simulation with periodic boundaries. The periodic box V (contoured
bold) is centred at the origin and is based on the lattice vectors e1, e2 and e3. The third dimension
is not shown.

Here, the inhomogeneous term is

F (y) =
2

λ+ 1

[
u∞(y) +

N∑
β=1

2a

Ca

∫
Sβ

(k(x)− 〈k〉β)n(x) · G(x− y) dSx

]
, (2.5)

where u∞(y) = (y2, 0, 0) is the non-dimensional mean flow, a = ao/L is the non-
dimensional non-deformed radius, k(x) = (k1 +k2)/2 is the local mean of the principal
surface curvatures, 〈k〉β is the average of k over Sβ , G = (G (1), G (2), G (3)) is the
symmetric Green tensor, and n(x) is the outward unit normal at x ∈ Sβ . In (2.4) and
in what follows (unless otherwise stated), indices 1, 2, 3 denote Cartesian vector and
tensor components in the basis eo1, e

o
2, e

o
3.

Wielandt’s deflation (Kim & Karilla 1991; Pozrikidis 1992) could be applied to
(2.4) to eliminate κ = (λ − 1)/(λ + 1) = ±1 from the spectrum of the boundary-
integral operator. While this deflation was crucial in the analysis of two-bubble
interactions (Zinchenko, Rother & Davis 1999), was widely used in two-dimensional
rheological simulations (Charles & Pozrikidis 1998), and recommended in multidrop
sedimentation (Zinchenko & Davis 2000), we found the deflation to offer almost
no help in the present three-dimensional simulations at high concentrations with the
viscosity ratio limited to λ = 3 or λ = 5. A probable explanation is a nearly continuous
spectrum for the boundary-integral operator (2.4) at high drop volume fractions, so
removal of the marginal eigenvalues only does not accelerate the convergence of
iterations. More surprisingly, for large λ ∼ O(10), when iterations of (2.4) were
often observed to diverge due to insufficient triangulations, the difficulty could not
be eliminated by deflation. For the above reasons, the non-deflated form (2.4) was
used in the present calculations. It is important, however, to reduce the variation
of the integrands on drop surfaces in (2.4) (as done in (2.5)), in order to accelerate
convergence in the multipole part (§ 4) of the algorithm; this goal is achieved by
considering fluctuations Q(x) from the surface-averaged values:

Q(x)|Sβ = u(x)− 〈u〉β, 〈u〉β =
1

Sβ

∫
Sβ

u dS. (2.6)
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Using the periodic kernel

τ̃ (k)(x− y) = τ (k)(x− y)− (x− y)kI ,

instead of τ (k), (2.4) can be transformed to (cf. (2.12) of paper I)

u(y) =
(λ− 1)

(λ+ 1)

[
2

N∑
β=1

∫
Sβ

Q(x) · τ̃ (x− y) · n(x) dSx + 〈u〉α

+ 2

N∑
β=1

∫
Sβ

(Q · n) (x− xcβ) dSx

]
+ F (y), y ∈ Sα (2.7)

where the surface centroid is

xcβ =
1

Sβ

∫
Sβ

x dS, (2.8)

and the tensor τ̃ = {τ(k)
ij } is now symmetric in all three indices.

To solve (2.4) at each time step for λ 6= 1, the following version of the minimal
residual technique is used. Having written (2.4) in the operator form u = Bu + F ,
three simple iterations (if necessary) ui+1 = Bui + F (i = 0, 1, 2) and corresponding
residuals ri = ui+1− ui are first calculated. The vector u = λ1u1 + λ2u2 + (1− λ1− λ2)uo
is sought to minimize the L2-norm of the residual

r(u) = Bu+ F − u = λ1r1 + λ2r2 + (1− λ1 − λ2)ro, (2.9)

N∑
α=1

∫
Sα

r2(u) dS → min .

The parameters λ1 and λ2 are found from the solution of the corresponding 2 × 2
system, and the process can be continued, if necessary, using u and u + r(u) as new
uo and u1, respectively. Iterations terminate once a residual in all boundary nodes on
all drops is small compared to the average velocity variation on Sα:

max |r| < δ

[
N∑
α=1

∫
Sα

[
u(x)− 〈u〉α]2 dS

/
N∑
α=1

Sα

]1/2

, (2.10)

with δ being typically 0.003; for a large number of drops, u(x)−〈u〉α in (2.10) is a more
appropriate velocity scale than u. Upon convergence by (2.10), the average residual
|r| over all nodes is typically 30–50 times smaller than max|r|. Using the minimum
residual technique typically reduces the number of iterations by 30–40%, compared to
simple iterations. These gains may be less than those from using biconjugate gradient
iterations in boundary-integral calculations (Zinchenko, Rother & Davis 1997, 1999),
but they do not require an adjoint operator (difficult to calculate for the combined
boundary-integral–multipole scheme of § 4).

Drop surfaces are discretized by unstructured meshes with a fixed topology and
updated by a Runge–Kutta time integration scheme, typically of second order, with
a constant time step. The quality of surface triangulations is maintained during
simulations by a version of passive mesh stabilization techniques (Zinchenko et
al. 1997, 1999) outlined in Appendix A. Normals and curvatures are calculated in
mesh nodes by the best paraboloid-spline (BPS) method of paper I; to expedite
BPS calculations, a linear extrapolation from the two preceding time steps (with
appropriate normalization) is used as an initial approximation for the normal vectors.
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Unlike in our sedimentation calculations (paper I), artificial surface smoothing was
not used in the present work. Due to the existence of the statistical steady state
in shear flow, abnormal high curvatures k ∼ (20–25)a−1, which may occasionally
develop in several (out of O(105)) nodes, tend to return back to normal. Without
smoothing, our long-time runs (§ 5) had an extremely small probability of failure. In
rare cases, when a high curvature developed on one drop (out of 100–200) which could
cause instability, the drop was simply replaced by the three-dimensional ellipsoid of
the largest possible volume which fits within the drop, to successfully continue the
simulation; the effect of this procedure on the total drop volume fraction (less than
0.2–0.3% error) and viscometric functions was found to be negligible.

With µeγ̇ for the stress scale, the non-dimensional average stress tensor can be
calculated as (e.g. Pozrikidis 2001)

Σij = I.T. + ∇i (u∞)j + ∇j (u∞)i

+

N∑
α=1

∫
Sα

[
2a

Ca

(
k(x)− 〈k〉α) ni (x− xcα)j + (λ− 1)

(
uinj + ujni

)]
dS

(2.11)

(I.T. is an insignificant isotropic term) and characterized by the non-dimensional shear
viscosity µ∗ = Σ12 = Σ21 and non-dimensional normal stress differences N1 = Σ11−Σ22

and N2 = Σ22−Σ33. Note that our N1, N2 differ from NP
1 , NP

2 defined by Loewenberg
(1998) by a factor of c/Ca, where c is the drop volume fraction. Using N1, N2 prevents
loss of information in the spherical-drop limit Ca→ 0; likewise, the viscosity µ∗, rather
than the particle shear stress ΣP

12 = (µ∗ − 1)Ca/c, is of interest at Ca→ 0.

3. Near-singularity subtractions
Success of the numerical solution of the boundary-integral equation (2.7) at high

volume fractions and λ 6= 1, in particular the convergence of iterations, is crucially
dependent on how accurately the double-layer integral (2.7) is represented in numerical
implementations. In the exact formulation, (2.7) is known to have the characteristic
values of κ = (λ − 1)/(λ + 1) (i.e. the values for which (2.7) is degenerate) outside
(−1, 1), so simple iterations are convergent. In practice, however, simple iterations are
often observed to diverge due to insufficient surface triangulations. Using advanced
iterative schemes (minimal residual, etc.) does not help in this case, since a dynamical
system with a distorted spectrum becomes close to degenerate at some instant of
time, and the calculations crash. Since the kernel τ̃ (r) ∼ r−2 is strongly singular at
r = x−y → 0, regularizations are needed, before the double layer can be approximated
to a sufficient accuracy with a reasonable number of boundary elements. Consider
the ‘desingularization’ for the integrals in (2.7),

2

∫
Sβ

Q(x) · τ o(x− y) · n(x) dSx, (3.1)

when the kernel is the free-space stresslet

τ o(r) =
3

4π

rrr

r5
(3.2)

(the general case (2.7) is discussed in § 4). When y ∈ Sβ , (3.1) is regularized by
subtracting Q(y) from Q(x) (which gives a finite integrand, as x → y) and adding
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Q(y) to the integral (e.g. Pozrikidis 1992, 2001). When y lies on another surface
Sα 6= Sβ , the near-singularity subtraction of Loewenberg & Hinch (1996) suggests
subtracting Q(x∗) from Q(x) in the integrand (3.1), where x∗ is the mesh vertex on
Sβ which is closest to y. Although a great improvement, this modification does not
completely eliminate the unbounded behaviour of the double-layer integrand when
y → Sβ . This near-singularity subtraction properly adapted to periodic boundary
conditions (paper I) allows robust multidrop calculations at low-to-moderate volume
fractions and λ = O(1), but we have found it insufficient in shear-flow dynamical
simulations at high concentrations. In particular, irrespective of the time step used,
the velocity iterations were observed to diverge after short strains of γ̇t = 1–1.5 from
the initial well-mixed state of spherical drops at N ∼ 100 and c = 0.45–0.55, even
with moderate viscosity contrast λ = 3 and as many as 1500 triangular elements per
drop. Unfortunately, much larger strains are needed for time averaging (§ 5).

In the new near-singularity subtraction developed in the present work, the sub-
tracted quantity Q∗ is unrelated to Q(x∗), but is found instead as the solution of a
variational problem. Let

4Sj = 1
3

∑4S (3.3)

(cf. (3.2) of paper I), where the summation is over all flat mesh triangle areas 4S
with vertex xj . For fast multidrop simulations, we wish to approximate (3.1), after
subtraction, by the simplest trapezoidal rule:

3

4π

∑
xj∈Sβ

[
r ·W (xj)

] [
r · (Q(xj)−Q∗)] r
r5

, r = xj − y, (3.4)

where

W (xj) = 2n(xj)4Sj. (3.5)

The unknown vector Q∗ is required to minimize the Euclidean norm of the dis-
cretized double layer (3.4) for a given y,∑

xj∈Sβ

[
r ·W (xj)

]2 [
r · (Q(xj)−Q∗)]2
r8

→ min, (3.6)

which gives a linear 3× 3 system of equations for Q∗:∑
xj∈Sβ

[
r ·W (xj)

]2
rr

r8

Q∗ =
∑
xj∈Sβ

[
r ·W (xj)

]2 [
r ·Q(xj)

]
r

r8
. (3.7)

Using Q∗ in place of Q(x∗) in (3.4) greatly improves the spectral properties of
the discretized double layer and enables long-time simulations at high concentrations
(§ 5), at least for a moderate viscosity ratio. Although Q∗ is mostly affected by the
nodes xj close to y, it is very important, from our experience, to retain all nodes
xj ∈ Sβ in the summations (3.7); had we restricted these summations to just a few
nodes xj close to y, the velocity iterations would start to diverge after several units
of strain at high volume fractions.

We also used a new ‘near-singularity’ subtraction for the free-space parts:∫
Sβ

f(x)n(x) · G(x− y) dSx, f(x) = k(x)− 〈k〉β (3.8)
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of the single-layer potential (2.5), where

Go(r) = − 1

8π

(
I

r
+
rr

r3

)
(3.9)

is the free-space Green’s function and y ∈ Sα 6= Sβ . Instead of subtracting f(x∗)
from f(x) (Loewenberg & Hinch 1996), the subtracted quantity f∗ in our approach is
required to minimize the near-gap contribution to the discretized single-layer potential
(3.8) after subtraction:∑

xj∈Sβ

∗[ f(xj)− f∗]2
(4Sj)2

[n(xj) · Go(r)]
2 → min . (3.10)

In contrast to (3.6)–(3.7), the summation
∑∗

includes only the nearest mesh node
x∗ and all the nodes xj ∈ Sβ adjacent to x∗; this modification reflects a slow decay of
Go(x− y), compared to τ 0(x− y), as x moves away from the gap. Using (3.9)–(3.10)
yields

f∗ =
Σ∗f(xj)(4Sj/r)2{1 + 3[r · n(xj)/r]2}
Σ∗(4Sj/r)2{1 + 3[r · n(xj)/r]2} . (3.11)

Although using the new near-singularity subtraction for the single layer is not as
crucial as for the double-layer potential, the form (3.11) helps to smooth the subtracted
quantity, f∗, compared to f(x∗). For y ∈ Sβ , regularization of (3.8) is simply made by
subtracting f(y) from f(x) in the integrand of (3.8).

4. Fast calculation of boundary-integral operators
With standard point-to-point summations, the calculation of all the single-layer

(2.5) and double-layer (2.7) potentials would require an O(N2M2) computational
cost (where N is the number of drops in the periodic box and M is the number
of collocation points per drop), thus heavily restricting dynamical simulations to
small N, even with the fastest calculation of Green’s functions G and τ̃ by suitable
interpolations. Instead, a hybrid of boundary-integral and economical multipole
techniques is used, following the procedure developed and described in detail in
paper I for multidrop sedimentation. This method is briefly outlined below, with an
emphasis on the differences between the shear flow and sedimentation problems.

Each drop surface Sα(α = 1, . . . , N) is represented by an unstructured mesh of flat
triangles (figure 2) with vertices xj (called the collocation nodes). For any smooth
integrand ϕ(x) on Sα, a simple trapezoidal rule is used, with reassignment of triangle
contributions to vertices (Rallison 1981):∫

Sα

ϕ(x) dS ≈∑
xj∈Sα

ϕ(xj)4Sj, (4.1)

with 4Sj given by (3.3). The free-space parts G0 and τ 0 (see (3.2) and (3.9)) are
singled out from the periodic Stokeslet and stresslet:

G(r) = G0(r) + G1(r), τ̃ (r) = τ 0(r) + τ 1(r). (4.2)

To calculate ‘self-interactions’, i.e. the contributions of the surface Sα 3 y to the
single-layer (2.5) and double-layer (2.7) boundary integrals for collocation nodes y,
partitions (4.2) are used, and the free-space contributions are calculated by direct
summations after the singularity subtractions (relations (3.4)–(3.7) of paper I). The
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Figure 2. On the calculation of near-field interactions. Assuming that shells Dγ and Dδ are
sufficiently separated, and y′ is ‘well outside’ Dγ , the contributions of block Bγ to the boundary
integrals for y, y′ and y′′ are calculated, respectively, by (i) re-expansion of Lamb’s singular series
from xoγ to xoδ , (ii) pointwise calculation of Lamb’s singular series, and (iii) direct point-to-point
summations.

‘far-field’ contributions to self-interactions (arising from G1 and τ 1) are calculated
by Taylor double series in powers of (xj − xcα)k and (y − xcα)`. These expansions are
generated to an arbitrary order depending on a ‘precision parameter’, ε (see below).
The number N of drops with centroids xcα ∈ V is assumed to be not too small, so that
the minimal spherical shell around Sα centred at xcα does not overlap minimal shells
around all other periodic images of Sα. This condition guarantees the convergence of
the far-field expansions for self-interactions; the larger N, the fewer terms suffice, in
general.

A more involved scheme is used to calculate the boundary-integral contributions of
surfaces Sβ 63 y. Since y may be close to Sβ or its periodic images, the near-singularity
subtractions are made first, and the integrals (2.5) and (2.7) are then approximated
as (cf. (3.8)–(3.9) of paper I)∫

Sβ

f(x)G(x− y) · n(x) dSx ≈
∑
xj∈Sβ

G(x− y) ·W (xj)

−∑
kαβ

Θ(kαβ, y)f∗
∑
xj∈Sβ

G0(xj + P(kαβ)− y) · n(xj)4Sj (4.3)

and

2

∫
Sβ

Q(x) · τ̃ (x− y) · n(x) dSx ≈
∑
xj∈Sβ

Q(xj) · τ̃ (xj − y) ·W (xj)

−∑
kαβ

Θ(kαβ, y)Q∗
∑
xj∈Sβ

τ 0(xj + P(kαβ)− y) ·W (xj). (4.4)

In (4.3)–(4.4) and in what follows, the weights W (xj) are

W (xj) = f(xj)n(xj)4Sj (4.5)
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for the single-layer calculations and are determined by (3.5) for the double-layer
calculations. The summations in the second lines of (4.3) and (4.4) are over all integer
vectors kαβ with ||xcβ + P(kαβ) − xcα|| < dα + dβ + ho, where dα and dβ are radii of
minimal spherical shells around Sα and Sβ centred at xcα and xcβ , respectively, and ho is
the threshold parameter normally set to 0.3a. Thus, only periodic images of Sβ close
to Sα are included in the near-singularity subtractions in the second lines of (4.3)
and (4.4). The quantities f∗ and Q∗ are determined as described in § 3, replacing Sβ
with its periodic image centred at xcβ + P(kαβ) in all the relations of § 3. The barrier
function Θ is

Θ(kαβ, y) = max{1− ||y − x∗ − P(kαβ)||2/h2
o, 0}, (4.6)

where x∗ ∈ Sβ is the mesh node which minimizes ||xj + P(kαβ) − y||. According to
(4.6), near-singularity subtractions are in effect only when the distance from y to a
periodic image of Sβ (calculated as the node-to-node minimum) is less than ho. For
||y − x∗ − P(kαβ)|| � ho, Θ is close to unity, so the terms in the second lines of (4.3)
and (4.4) effectively cancel the near-singular behaviour of the terms on the right of
the first lines; at the same time, the subtracted terms in (4.3) and (4.4) disappear
for fine triangulations. Except for the small-N case, only one image of Sβ , namely
the one which minimizes the centroid-to-centroid distance from Sα, can contribute to
the second sums in (4.3) and (4.4); besides, using the barrier Θ greatly expedites the
calculation of these terms in a point-to-point manner. As noted in § 3, it is crucial to
use Q∗ instead of Q(x∗) in the second line of (4.4) for successful velocity iterations at
high concentrations and contrast viscosities in dynamical simulations.

Multipole expansions are used to handle the first sums in (4.3) and (4.4). First, all
mesh nodes are organized into compact blocks B1, . . . ,BNB

(NB > N). To this end,
every drop is cut into

max

{[
`α

(
2π`α
3Vα

)1/2

− 1

]
, 2

}
(4.7)

pieces by a plane bisecting the line of maximum elongation (figure 2), where `α is the
drop diameter, Vα is the drop volume, and the brackets stand for the greatest integer
function. Unlike (3.11) of paper I, the form (4.7) allows a drop to be divided into no
more than two blocks, which we have found advantageous in the present calculations
(§ 6) with N > 50 and small-to-moderately large deformations. A minimal spherical
shell Dγ with a centre xoγ and radius doγ is constructed around each block Bγ with
sufficient accuracy. If a drop Sβ is compact and consists of a single block Bγ , the
block centre xoγ is not necessarily the surface centroid xcβ , and doγ 6= dβ , in general.

As the next step, the free-space single-layer contribution of every block Bγ(γ =
1, . . . , NB) is expanded in Lamb’s singular form:

∑
xj∈Bγ

G0(xj − y) ·W (xj) =

∞∑
ν=1

[
∇× (Rγχ−(ν+1)) + ∇Φ−(ν+1)

− (ν − 2)R2
γ∇p−(ν+1)

2ν(2ν − 1)
+

(ν + 1)p−(ν+1)Rγ

ν(2ν − 1)

]
(4.8)

for the weights (4.5). Also, if λ 6= 1, similar expansions are generated for the free-space
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double-layer contributions of every block on each iteration:∑
xj∈Bγ

Q(xj) · τ 0(xj − y) ·W (xj) =

∞∑
ν=1

[
∇× (Rγχ̃−(ν+1)) + ∇Φ̃−(ν+1)

− (ν − 2)R2
γ∇p̃−(ν+1)

2ν(2ν − 1)
+

(ν + 1)p̃−(ν+1)Rγ

ν(2ν − 1)

]
+ ∇Φ̃−1 (4.9)

for the weights (3.5). In (4.8)–(4.9), Rγ = y−x0
γ , and p−(ν+1)(Rγ), Φ−(ν+1)(Rγ), χ−(ν+1)(Rγ),

p̃−(ν+1)(Rγ), etc. are solid spherical harmonics of order −(ν + 1). Expansions (4.8)–
(4.9) are generated to a sufficient order by an economical rotation-based algorithm
(§ 3.2 of paper I) before handling the sums in the first lines of (4.3) and (4.4). Also
precalculated is a sufficient number of single-layer

D
(γ)
ν,m,k = (−1)ν

∑
xj∈Bγ Zν,m(xj − xoγ)Wk(xj),

E
(γ)
ν,m,k,` = (−1)ν

∑
xj∈Bγ Zν,m(xj − xoγ)Wk(xj)(xj − xoj )`

 (4.10)

and (if λ 6= 1) double-layer

D̃
(γ)
ν,µ,k,s = (−1)ν−1

∑
xj∈Bγ W(s(xj)Qk)(xj)Zν,µ(xj − xoγ),

Ẽ
(γ)
ν,µ,k,s,` = (−1)ν

∑
xj∈Bγ (xj − xoγ)`W(s(xj)Qk)(xj)Zν,µ(xj − xoγ)

 (4.11)

‘far-field moments’ for every block. In (4.10)–(4.11),

Zν,m(r) =
2π1/2rνYν,m(r)

[(2ν + 1)(ν − m)!(ν + m)!]1/2
, (4.12)

where Yν,m(r) is the standard normalized surface spherical harmonic, and the paren-
theses round indices denote symmetrization in s and k.

Now, to calculate the sums on the first lines of (4.3) and (4.4) for y ∈ Bδ ⊂ Sα,
each block Bγ of the surface Sβ 6= Sα is temporarily shifted periodically to minimize
the centre-to-centre distance ||xoγ − xoδ ||. The objects associated with the shifted block
are still denoted by xj , x

o
γ , Dγ . Also, G(xj − y) and τ̃ (xj − y) are split (4.2) into the

free-space G0(xj − y), τ 0(xj − y) and far-field G1(xj − y), τ 1(xj − y) parts. If the shells
Dδ and Dγ do not overlap, the free-space contributions of block Bγ to the sums on
the first lines of (4.3) and (4.4) can be evaluated at y ∈ Bδ by first re-expanding (4.8)
and (4.9) at xoδ in Lamb’s regular form

∞∑
n=1

[
∇× (Rδχn) + ∇Φn +

(n+ 3)R2
δ∇pn

2(n+ 1)(2n+ 3)
− npnRδ

(n+ 1)(2n+ 3)

]
, (4.13)

where Rδ = y − xoδ and pn(Rδ), Φn(Rδ) and χn(Rδ) are solid harmonics of order n.
However, only shifted blocks Bγ ‘sufficiently separated’ from Bδ are considered (so
that the minimal shells Dγ and Dδ around Bδ and Bγ have enough clearance for
sufficient convergence of (4.13)), and contributions from all such blocks Bγ to (4.13)
are accumulated, using a fast, rotation-based re-expansion algorithm (§ 3.3 of paper
I). The cumulative series (4.13) are calculated for all y ∈ Bδ in a pointwise manner.

If a shifted block Bγ is not ‘sufficiently separated’ from Bδ , but node y ∈ Bδ is ‘well
outside’ the shell Dγ , Lamb’s singular series (4.8)–(4.9) are used directly to calculate
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the left-hand sides of (4.8)–(4.9). Only in rare cases, when y is inside Dγ , or is outside
but too close to Dγ , should we use standard point-to-point summations (4.8)–(4.9).

The far-field contributions of the shifted block Bγ , i.e. the left-hand sides of (4.8)
and (4.9) with G1(xj−y) and τ 1(xj−y) instead of G0(xj−y) and τ 0(xj−y), respectively,
can be evaluated at y ∈ Bδ by a special form of Taylor double series in powers of
xj − xoγ and y − xoδ for Stokes flows (§ 3.4 of paper I):∑

xj∈Bγ
Wk(xj)(G1)k`(xj − y)

=

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)

{ ∞∑
ν=0

ν∑
µ=−ν

[
D

(γ)
ν,µ,k∂n+ν,m+µgk`(Rγδ)

− 1
2
E

(γ)
ν,µ,k,`∂n+ν,m+µq

(k)
1 (Rγδ) + 1

2
(Rγδ)`D

(γ)
ν,µ,k∂n+ν,m+µq

(k)
1 (Rγδ)

]}

+ 1
2
(Rδ)`

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)

∞∑
ν=0

ν∑
µ=−ν

D
(γ)
ν,µ,k∂n+ν,m+µq

(k)
1 (Rγδ), (4.14)

∑
xj∈Bγ

Qs(xj)(τ1)ks`(xj − y)Wk(xj)

=

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)

{ ∞∑
ν=0

ν∑
µ=−ν

[
D̃

(γ)
ν,µ,k,s∂n+ν,m+µtks`(Rγδ)

+ 1
2
Ẽ

(γ)
ν,µ,k,s,`∂n+ν,m+µq̃

(ks)
1 (Rγδ) + 1

2
(Rγδ)`D̃

(γ)
ν,µ,k,s∂n+ν,m+µq̃

(ks)
1 (Rγδ)

]}

+ 1
2
(Rδ)`

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)

∞∑
ν=0

ν∑
µ=−ν

D̃
(γ)
ν,µ,k,s∂n+ν,m+µq̃

(ks)
1 (Rγδ). (4.15)

Here, Rγδ = xoδ − xoγ is the minimal block-to-block vector (for the shear flow problem,

Rγδ does not necessarily belong to the cell V = {ξiei, |ξi| 6 1/2}), ∂ν,µ = (D1 −
iD2)

µD
ν−|µ|
3 , where Di is the partial derivative with respect to ith Cartesian coordinate

and (D1 − iD2)
µ = (−1)µ(D1 + iD2)

−µ for µ < 0,

gk`(r) = (G1)k` − 1
2
q

(k)
1 (r)r`, (4.16)

where q(k)
1 (r) is the pressure associated with the Stokes velocity ((G1)k1, (G1)k2, (G1)k3),

tks`(r) = (τ1)ks`(r)− 1
2
q̃

(ks)
1 (r)r`, (4.17)

where q̃(ks)
1 (r) is the pressure associated with the velocity ((τ1)ks1, (τ1)ks2, (τ1)ks3), and

D
(γ)
ν,µ,k , E

(γ)
ν,µ,k,`, D̃

(γ)
ν,µ,k,s, and Ẽ

(γ)
ν,µ,k,s,` are the far-field moments (4.10)–(4.11). As shown

in § 3.4 of paper I, the derivatives in (4.15) can be expressed in terms of ∂n,m g and
∂n,m q1. The number N of drops in the cell is assumed to be not too small, so that the
shell Dδ does not overlap any periodic images of Dγ , except possibly Dγ itself, which
guarantees the convergence of the far-field expansions (4.14)–(4.15); in general, the
larger N, the fewer terms suffice. Calculation of the far-field parts of self interactions
(see above) is a particular case of (4.14)–(4.15), when the summations in (4.10)–(4.11)
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and (4.14)–(4.15) are over the entire drop surface Sα, δ = γ = α, Rγδ = 0, and xoδ = xoγ
is set to xcα.

For the multidrop sedimentation problem, the periodic cell V is a stationary cube,
and all the necessary derivatives ∂n,mgk` and ∂n,mq

(k)
1 for (4.14)–(4.15) could be tabulated

prior to dynamical simulations. A new difficulty in the present case of shear flow
is the time dependence of the periodic cell V , making the task of precalculating
the derivatives ∂n,mgk` and ∂n,mq

(k)
1 prohibitive in terms of memory and disk space

requirements (since, at high concentrations and N = O(100), the derivatives of order
n = O(10) are typically needed). In Appendix B, a fast algorithm is offered for
dynamical calculation of ∂n,mgk,` and ∂n,mq

(k)
1 , to avoid this difficulty. In the present

implementation, the far-field, O(N2) part is fast compared to the rest of the code, and
the whole algorithm scales practically linearly in N, as long as N < 1000 (assuming
that N4 = O(103) boundary elements per drop are used; see Appendix B for more
detail).

An essential feature of the present algorithm, as well as that of paper I, is the
‘economical truncation’ of multipole expansions/re-expansions, depending on a single
precision parameter ε for optimized performance. In particular, we take into account
that the rate of convergence of the re-expansion from (4.8) or (4.9) to (4.13) strongly
depends on the clearance between the shells Dδ and Dγ; likewise, the number of terms
on the right-hand sides of (4.8) or (4.9) to be retained for pointwise calculations is a
strong function of ||y − xoγ ||/doγ . To construct the economical truncation bounds, the
algorithm of § 3.5 of paper I starts from the estimation of the coefficients ak in the
expansion∑

xγ∈Bγ
G0(xj − y) ·W (xj) =

∞∑
k=0

ak

(
doγ

Rγ

)k+1

, Rγ = |y − xoγ | > doγ (4.18)

for a block Bγ , where, for small k, a model behaviour |ak| = Cγ/(k + 1)3 with
Cγ = const is assumed. Unlike in the sedimentation problem, however, it would be
unreliable for force-free drops to estimate Cγ from ao, since the sum of the single-layer
weights (3.6) over all xγ ∈ Bγ is zero (to within triangulation errors), if the block Bγ

constitutes a whole drop. Instead, an explicit form (3.9) and Taylor expansion yield,
for Rγ � doγ ,

−8πG0(xj − y) ·W (xj) ∼ W

Rγ
+

(W · Rγ)Rγ

R3
γ

+
(Rγ · ∆x)W

R3
γ

− (W · Rγ)∆x

R3
γ

− (W · ∆x)Rγ

R3
γ

+
3(Rγ · ∆x)(W · R)R

R5
γ

, (4.19)

where, for brevity, W = W (xj) and ∆x = xj−xoγ . Substituting (4.19) into the left-hand

side of (4.18), an upper bound on the O(R−2
γ ) term can be found through invariants

of the tensor

Tγ =
∑
xγ∈Bγ

(xj − xoγ)W (xj). (4.20)

Comparing the result with the right-hand side of (4.18) at k = 1 suggests the estimate

Cγ =
1

π(doγ)
2
[||Tγ − T ∗γ ||+ |trTγ|+ 3||Tγ||], (4.21)

where an asterisk stands for the transpose, and Euclidean norms are used for the
matrices. Relation (4.21) replaces (3.85) of paper I for the present problem, but
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otherwise the construction of near-field truncation bounds νnf(δ, γ), nnf(δ, γ), ν̃nf(δ, γ),
and ñnf(δ, γ) for the re-expansions from (4.8)–(4.9) to (4.13), and the bounds ν∗nf , and
ν̃∗nf for pointwise calculations of the right-hand side of (4.8)–(4.9) repeats (3.82)–(3.92)
of paper I without changes. Using (3.94) of that paper, Rδγ +m (where Rδγ = xoγ − xoδ
is the minimal block-to-block vector after the shift of Bγ) must be replaced by
Rδγ + P(m), in accordance with the geometry of the skewed lattice (2.1); this is the
only change needed to calculate the far-field truncation bounds νff , nff , and ν∗ff for
(4.14), and ν̃ff , ñff , and ν̃∗ff for (4.15) in the present problem. Parameters enf = 1,
eff = 10, ẽnf = 0.2, and ẽff = 10 (cf. paper I) balancing the near/far-field truncation
errors for the inhomogeneous F (y) and double-layer terms in (2.7) are selected. With
fixed enf , eff , ẽnf , and ẽff , our truncation scheme depends on a single precision
parameter ε, and all multipoles are eventually included, as ε → 0. However, for
optimized performance, a threshold order ko ∼ 20 is set to limit the use of multipoles
in near-field expansions/re-expansions; if a truncation bound exceeds ko, pointwise
boundary-integral operations are invoked instead as in paper I.

Due to a somewhat empirical construction of economical truncation bounds, the
‘precision’ ε is not a deviation from the non-multipole solution in a rigorous sense,
but it does correlate with this deviation (§ 5). The condition ε� a is roughly required
for the truncation errors to be small compared to the microstructural velocity O(a) (in
the sedimentation problem, we had ε � a2). Unless otherwise stated, ε = 10−3a was
used in the present calculations; the effect of ε on dynamical simulations is discussed
in § 5. Recall that a = ao/L is the non-dimensional radius of an undeformed drop.

5. Numerical results
5.1. Tests for dilute and periodic systems

Due to the large size of our hybrid multipole–boundary-integral code, it was crucial
to test it against known solutions in special cases. In table 1, our steady-state particle
stresses ΣP

12 = Ca(µ∗ − 1)/c, NP
1 = CaN1/c and NP

2 = CaN2/c for dilute emulsions
are compared with those read from figure 9(a, b) of Kennedy et al. (1994); for every
Ca and λ, a column (ΣP

12, N
P
1 , NP

2 ) is given. Our results were obtained for random
emulsions with N = 8 drops in a periodic cell and N4 = 1280 triangular elements
per drop at drop volume fraction c = 10−4, while the calculations of Kennedy et al.
(1994) in table 1 are for one drop with 384 quadratic boundary elements in a shear
flow. Considering some uncertainty of reading from the graphs of Kennedy et al.
(1994), especially for small NP

2 , the agreement between the two methods in table 1 is
generally very good.

Sangani & Lu (1987) calculated the instantaneous shear viscosity µ∗ = 1 + β of
concentrated emulsions of spherical drops in a simple cubic array for different λ
and χ = (c/cmax)

1/3, with cmax = π/6. It is a non-trivial matter to reproduce the
Ca = 0 limit in boundary-integral calculations for deformable drops, and dynamical
simulations are required, since small dynamically formed O(Ca) deviations from the
spherical shape have an O(1) effect on the stress tensor (see (2.8)). For the comparison
with the solution of Sangani & Lu (1987), we considered small but finite Ca, and
arranged N = 27 initially spherical drops with λ = 5 in a cubic cell to form a simple
cubic array with χ = 0.95 at t = 0 (figure 3). With these special initial conditions,
all drops deform and move identically at t > 0, each drop stays in its own subcell
of periodicity (figure 3), and the problem is equivalent to the transient behaviour
of an ordered emulsion of deformable drops (one drop per cell), the lattice being
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Present code (N4 = 1280) Kennedy et al. (1994)

λ = 1 λ = 6.4 λ = 1 λ = 6.4

(a) ΣP
12 0.318 0.392 0.315 0.390

NP
1 0.296 0.135 0.285 0.120

NP
2 −0.079 −0.028 −0.080 –

(b) ΣP
12 0.421 0.558 0.420 0.565

NP
1 0.645 0.186 0.625 0.180

NP
2 −0.155 −0.037 −0.160 −0.040

(c) ΣP
12 – 0.884 – 0.880

NP
1 – 0.241 – 0.250

NP
2 – −0.046 – −0.055

Table 1. Particle stresses ΣP
12, NP

1 , NP
2 for dilute emulsions of deformable drops:

(a) Ca = 0.2, (b) Ca = 0.3, (c) Ca = 0.5.

ç·t = 0 ç·t = 3

Figure 3. Simulation of the shear flow with N = 27 drops in the periodic cell at (c/cmax) = 0.95,
λ = 5, Ca = 0.025 and N4 = 1280 starting from special initial conditions. At t = 0, drops are
spherical and are chosen to form a simple cubic array. At strain γ̇t = 3, drops become slightly
deformed, but remain perfectly layered. Only nine out of 27 drops in the plane of shear are shown
in each case.

skewed by the shear flow; this problem was formulated by Pozrikidis (1993). In
figure 4(a), our shear viscosity µ∗ is plotted vs. strain γ̇t for Ca = 0.05, 0.025, and
0.0125, and N4 = 1280; using N4 = 720 instead of 1280 at Ca = 0.025 did not show
any appreciable changes. For Ca = 0.05, strains γ̇t = 2–3 are needed to reach the
periodic regime, while for Ca = 0.0125 strains of γ̇t = 1 suffice. At integer strains
γ̇t = k (k → ∞), when the periodic lattice is a simple cubic array, our viscosities
are 2.46, 2.395, and 2.328 for Ca = 0.05, 0.025, and 0.0125, respectively. As Ca → 0,
these results closely approach the viscosity µ∗ = 2.290 of simple cubic arrays of
spherical drops at λ = 5 and χ = 0.95 from table 3 of Sangani & Lu (1987). A similar
comparison was made at χ = 0.9 (figure 4b), when the periodic regimes are reached
even more rapidly; again, our viscosities of 2.056, 2.027, and 1.996 for Ca = 0.05,
0.025, and 0.0125, respectively, at large integer strains γ̇t = k → ∞ tend to the result
µ∗ = 1.981 of Sangani & Lu (1987), as Ca→ 0. Interestingly, the limiting viscosity for
spherical drops is approached from above (unlike for random emulsions, see § 5.2).
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Figure 4. (a) The dimensionless viscosity µ∗ vs. strain for the simulation shown in figure 3
(short-dashed line) and two similar simulations using Ca = 0.05 (long-dashed line) and Ca = 0.0125
(solid line); (b) the same as (a) but at c/cmax = 0.9.

In addition to the results of Sangani & Lu (1978), Pozrikidis (1993) derived
an asymptotic relation for the time-averaged viscosity of dilute sheared periodic
emulsions of spherical drops which form initially a simple cubic array:

µ∗ = 1 + 2.5γc(1 + 0.1368γc− 1.403δc2/3), c→ 0, (5.1)

with γ = (λ+ 2/5)/(λ+ 1) and δ = λ/(λ+ 1). Relation (5.1) is believed to be accurate
in a wide range of χ (when λ = O(1)), except for the vicinity χ ≈ 1 of close packing
(Pozrikidis 1993). Our simulation at χ = 0.7, λ = 1, Ca = 0.0125, N = 27, and
N4 = 1280, similar to those in figures 4(a, b) yields the time-averaged viscosity (after
the periodic regime is established) of µ∗ = 1.326, which is indeed in an excellent
agreement with µ∗ = 1.322 from (5.1). Note that these tests at N = 27 validate both
the near-field and the far-field interaction parts of our code, as well as the deformation
part. (On the other hand, these tests show the importance of choosing random initial
configurations in dynamical simulations for real emulsions; otherwise, special initial
conditions may have an extremely long memory.) Pozrikidis (1993) also considered
shear flow of periodic emulsions (N = 1) at finite Ca, but, due to accuracy limitations
mentioned in his paper, we have not attempted a comparison with our code in this
case. Two more comprehensive tests for our code are discussed below.

5.2. Random concentrated emulsions

In our dynamical simulations for random concentrated systems, an initial state at
t = 0 was typically a random, ‘well-mixed’ arrangement of spherical drops with
equal probability of all non-overlapping configurations prepared by the standard
Monte-Carlo method (e.g. MacKeown 1997). With one exception (see below), at least
several million Monte-Carlo steps were always used, so that our initial packings with
N = 100–200 did not suffer from metastability at the highest concentration c = 0.55
considered, but were always in ‘thermodynamical equilibrium’. At c = 0.55, such states
are known to have partial order. In contrast to sedimenting emulsions of deformable
drops, which always cluster (paper I), an emulsion of drops suspended in shear flow
is always expected to reach a statistical steady state for subcritical breakup conditions
(Loewenberg & Hinch 1996). In a few cases, we selected as the initial condition a
statistical steady-state configuration reached for a different Ca or λ, although this
strategy showed only minor advantages in the present calculations.

Figure 5 presents a typical snapshot of one of our simulations with λ = 1, c = 0.5,
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Figure 5. A snapshot of the dynamical simulation for c = 0.5, λ = 1, Ca = 0.1, N = 200 and
N4 = 1280 at the steady-state strain of γ̇t = 4.45. The centres of 200 independent drops have been
mapped into (0, 1)3, an initial periodic cell.

Ca = 0.1, N = 200 and N4 = 1280 at the steady-state strain of γ̇t = 4.45; only
200 drops with centres in (0, 1) × (0, 1) × (0, 1), an initial periodic cell, are shown.
The whole simulation was done from t = 0 (when drops are spherical) to γ̇t ≈ 28
by the second-order Runge–Kutta integration scheme with a constant strain step
γ̇∆t = 0.01. For the typical snapshot in figure 5, one half of the second-order step
took 178 s on a DEC 600au workstation. Of this, 153 s are spent on boundary
integrals (2.5) (with all overheads for far- and near-field moments, drop partitioning
into blocks, truncation bounds, etc. (§ 4) and dynamical pretabulation of the Green
function derivatives (Appendix B) with NT = 6), plus 12 s for normal and curvature
calculations by BPS (§ 2) and 13 s for passive mesh stabilizations (Appendix A). As
an essential validation of our hybrid boundary-integral–multipole code for arbitrary
configurations and shapes, we compared, for the snapshot in figure 5, our boundary
integrals (2.5) for F (xi) with exact values F ex(xi) (for a given triangulation) obtained by
standard point-to-point summations in the first line of (4.3) and similar ‘self-integrals’
(see (3.4a) of paper I), i.e. without drop partitioning into blocks and multipoles. In
the point-to-point scheme, the free-space part G0 of the Green function G(xj − y)
was subtracted out (as in Loewenberg & Hinch 1996), and the remainder G1(ξ)
was calculated in the periodic cell V = {ξiei, |ξi| 6 1/2} as the quadratic Taylor
approximation at the nearest node of a 91 × 91 × 91 mesh in V through tabulated
derivatives of G1 to the second order in V and symmetry properties. Such a fine mesh
and quadratic interpolation were chosen only for the most accurate comparison, to
exclude any appreciable errors in G(xj − y). Of interest is the excess velocity field
∆u(y) = F (y) − u∞(y) (for λ = 1) which determines the microstructural dynamics,
rather than F (y), and we used three criteria to quantify the difference between ∆u(y)
and ∆uex(y) = F ex(y)− u∞(y):

δ1(∆u, ∆uex) =
1

〈∆u2
ex〉1/2 max

α, xi∈Sα
||∆u(xi)− ∆uex(xi)||, (5.2a)

δ2(∆u, ∆uex) =
1

N

N∑
α=1

{
1

〈∆u2
ex〉α max

xi∈Sα
[∆u(xi)− ∆uex(xi)]

2

}1/2

, (5.2b)
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δ3(∆u, ∆uex) =
[
〈(∆u− ∆uex)

2〉
/
〈(∆uex)2〉

]1/2

. (5.2c)

Here 〈· · ·〉α and 〈· · ·〉 denote averaging over Sα and all surfaces, respectively. In table 2,
δi(∆u, ∆uex) and the CPU times (in seconds) for the calculation of all the boundary
integrals (2.5) by the present method on a DEC 600au are given vs. the precision
parameter ε (§ 4), for drop partitioning into blocks (i) enabled (with a total of 241
blocks) and (ii) disabled. Using drop partitioning in this case helps to reduce the
errors δi, especially the maximum deviation from ∆uex, with negligible changes in
the CPU times. All errors δi strongly correlate with the intuitive precision parameter
ε and tend to zero, as ε → 0, which proves the convergence of our code to the
standard point-to-point scheme. The comparison of small ∆u ∼ a and ∆uex is a more
stringent test than that of F and F ex. At ε = 10−3a and drop partitioning enabled (as
in dynamical simulations for figure 5), it takes our code only 153 s to calculate all
the boundary integrals (2.5). In comparison, direct point-to-point summations were
impractically slow (about 203 min of CPU time) prohibiting dynamical simulations
of such large systems by the standard method. At high drop volume fractions
c > 0.5, the performance of our hybrid code slightly degrades in computational
efficiency (roughly 1.5–1.6 times for N ∼ 102 and N4 ∼ 103) compared to the case of
moderate concentrations c ∼ 0.25 (paper I); primarily, this degradation is due to the
increased weight of costly direct summations for densely located drops. Nevertheless,
the observed almost 80-fold gain over the standard method is significant. Precisions
ε ∼ 10−3a have a surprisingly small effect on the results of dynamical simulations (see
below) and could probably be relaxed, with modest additional savings in the CPU
time (table 2).

Although small systems (N ∼ 10) can be simulated by the much simpler direct
boundary-integral method, we have found that it is quite important to use much larger
systems (N > 0(102)) in emulsion rheology simulations at high drop volume fractions
for two reasons. First, the statistical fluctuations for small systems are much larger,
necessitating larger strain intervals for averaging the results. In figure 6(a–c), the
trajectories of the shear viscosity µ∗ and normal stress differences N1 and N2 vs. strain
at c = 0.5, λ = 1, Ca = 0.05 and N4 = 1280 are shown for two simulations using
N = 10 (dashed lines) and N = 100 (solid lines). For N = 10, our hybrid scheme of
§ 4 would not give any particular advantages (and, moreover, would be difficult to use
without modifications at high c because of slow convergence/divergence of far-field
expansions in this case), so we used a direct boundary-integral method. With N = 10,
statistical fluctuations are particularly large for N1 (figure 6b) and require strains of
γ̇t ∼ 102 for averaging (after an unsteady part of the trajectory has been cut off); in
contrast, for N = 100, strains of 30–40 suffice to obtain average steady-state values
for 〈µ∗〉, 〈N1〉, 〈N2〉 with absolute errors of ±0.02, ±0.04, and ±0.03, respectively (here
and henceforth statistical error estimates correspond to 67% confidence intervals).
For N = 100, each half of the second-order Runge–Kutta time step by our hybrid
method takes about 77 s on a DEC 600au, which is only two times greater than
that for N = 10 by the standard method. For this reason, considering small systems
(N ∼ 10) does not offer computational advantages at high concentrations. When
Ca → 0, relatively large statistical fluctuations are observed even in the calculations
with 200 drops (figure 7a–c).

Secondly, and most importantly, when statistical errors for N ∼ 10 are eliminated
by adequate averaging, the systematic errors can still be quite large, especially for the
normal stress differences. Figure 8(a–c) presents comparisons of 〈µ∗〉, 〈N1〉 and 〈N2〉
at c = 0.5 and λ = 1 for N = 10, 50, 100, and 200. To obtain the results in figure 8(a–
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CPU CPU
ε δ1 δ2 δ3 time (s) δ1 δ2 δ3 time (s)

10−2a 5.3× 10−2 2.3× 10−2 7.4× 10−3 121 1.1× 10−1 2.8× 10−2 9.0× 10−3 119
3× 10−3a 2.8× 10−2 8.6× 10−3 2.7× 10−3 136 4.2× 10−2 1.0× 10−2 3.4× 10−3 134
10−3a 7.9× 10−3 3.3× 10−3 1.1× 10−3 153 1.7× 10−2 3.9× 10−3 1.3× 10−3 150
3× 10−4a 3.8× 10−3 1.1× 10−3 3.7× 10−4 176 6.7× 10−3 1.4× 10−3 4.7× 10−4 172
10−4a 1.3× 10−3 4.2× 10−4 1.4× 10−4 203 2.4× 10−3 4.9× 10−4 1.7× 10−4 198
10−5a 1.9× 10−4 6.0× 10−5 2.4× 10−5 266 2.9× 10−4 6.3× 10−5 2.3× 10−5 260

Table 2. The convergence of the present solution ∆u to the standard O(N2N24) solution ∆uex as ε→ 0, in the single-layer test for c = 0.5, N = 200,
N4 = 1280.



40 A. Z. Zinchenko and R. H. Davis

4

3

2

1
0 10 20 30 40 50 60

Strain, ç· t

(a)

l*

0 10 20 30 40 50 60

Strain, ç· t

(b)

2.5

2.0

0.5

70 80

3.0

1.5

1.0

70 80

N1

0 10 20 30 40 50 60

Strain, ç· t

(c)

70 80
–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

N2

Figure 6. The trajectories of the dimensionless effective viscosity (a), and first (b) and second (c)
normal stress differences vs. strain at c = 0.5, λ = 1, Ca = 0.05 and N4 = 1280 for N = 10 (dashed
lines) and N = 100 (solid lines) drops. A second-order Runge–Kutta scheme was used with step
γ̇∆t = 0.0045.

c), we integrated to strains γ̇t ∼ 28–45 for N = 50–200 and to γ̇t ∼ 50–80 for N = 10.
Constant-strain steps of 0.0025, 0.00375, 0.0045, 0.01, 0.0135, 0.010, and 0.02 were used
for Ca = 0.025, 0.0375, 0.05, 0.1, 0.15, 0.2, and 0.25–0.3, respectively. Second-order
and first-order Runge–Kutta time integration schemes were employed for Ca > 0.05
and Ca 6 0.0375, respectively (see below for the analysis of time integration errors);
1280 (for Ca > 0.05) or 1500 (for Ca 6 0.0375) triangular elements per drop were
used. An initial transient part of every trajectory (µ∗(γ̇t), N1(γ̇t), or N2(γ̇t)) was always
excluded from averaging. The bounds on the cutoff strain γcutoff (often, the first two
pronounced extrema of µ∗, N1, or N2) are usually obvious from the graphical analyses
(e.g. see figures 6 and 7); to remove ambiguity, γcutoff was determined within these
bounds to minimize the dispersion of partial averages over the four remaining strain
intervals of equal length. This dispersion was also used for a rough estimation of the
statistical error. Many results in figure 8 were double-checked starting from different
random initial configurations; the discrepancies are consistent with the error estimates
along a single trajectory. The direct boundary-integral code used for N = 10 is the
same as we used to validate our economical method in table 2 (except that a faster,
linear interpolation for the smooth part G1 of Green’s function was employed on a
coarser mesh 31 × 31 × 31 in V , with these changes giving negligible errors for the
purposes of comparisons in figure 8).

With N ∼ 102, the absolute statistical errors in figure 8(a–c) are as small as 0.01
for 〈µ∗〉 and 0.01–0.02 for 〈N1〉 and 〈N2〉 at Ca = 0.2, but can grow to 0.02 for
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Figure 7. The trajectories of the dimensionless effective viscosity (a), and first (b) and second (c)
normal stress differences for c = 0.5, λ = 1, N4 = 1280–1500 and N = 200, with Ca = 0.0375 (thick
lines), 0.1 (dashed lines) and 0.2 (thin solid lines). The simulation for Ca = 0.25 behaves similarly
to that for Ca = 0.2 and is not shown.

〈µ∗〉 and 0.03–0.04 for 〈N1〉 and 〈N2〉 at the smallest capillary numbers, due to the
increased dispersion of data as Ca → 0 (figure 7). For N = 10, the statistical errors
may be slightly higher. A few results (e.g. 〈N1〉 and 〈N2〉 for N = 10 and Ca = 0.025)
with poor statistical convergence have been removed from figure 8. The cutoff strains
γcutoff are typically from 2.5 to 5; the trajectory of N1 in figure 6(b) represents a very
unusual case with a much longer relaxation time (γcutoff ∼ 14). The relaxation time is
also larger for special initial conditions (see below) and for drops close to breakup.
The latter is the case for Ca = 0.3 at c = 0.5 and λ = 1, and the steady-state viscosity
〈µ∗〉 for N = 100 is noticeably higher than for N = 10 (figure 8a), probably due
to the confining effect of the periodic box on drop deformation in small systems.
At Ca = 0.2 and 0.1, the values of 〈µ∗〉 for N = 50, 100, and 200 show excellent
convergence, while the result for N = 10 at Ca = 0.2 still noticeably underestimates
the viscosity. The convergence of 〈µ∗〉 for N = 100 and 200 remains excellent at
Ca = 0.0375. A close agreement between the viscosities for small (N = 10) and large
systems at Ca = 0.1 and 0.05 is fortuitous, since the approximation N = 10 seriously
underestimates 〈µ∗〉 at a smaller capillary number Ca = 0.025. In all cases, a shear
thinning effect is observed, as increasing Ca allows the drops to slide more easily past
each other with larger deformation.

In general, figure 8(a) shows that small systems (N ∼ 10) are inadequate for
calculating 〈µ∗〉 at high concentrations, underestimating the viscosity for large de-
formations and failing to predict the steep rise of 〈µ∗〉 at Ca → 0. Comparison of
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Figure 8. The N-dependence of the steady-state dimensionless effective viscosity (a), and first (b)
and second (c) normal stress differences for c = 0.5, λ = 1, N4 = 1280–1500 and different Ca.
Open crosses are for N = 10, open squares are for N = 50, dark squares are for N = 100, and plus
symbols are for N = 200.
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the first normal stress difference 〈N1〉 for small and large systems (figure 8b) shows
more dramatic deviations. At Ca = 0.3, a small system (N = 10) underestimates
〈N1〉, which is believed, again, to be a confining effect of the periodic box on drop
deformation, since N1 is quite sensitive to the aspect ratio. At Ca = 0.2, the values
of 〈N1〉 for N = 50, 100, and 200 show excellent convergence, while the N = 10
approximation starts overestimating 〈N1〉, probably because multibody effects on N1

become more important than the effect of drop deformation. The convergence of
〈N1〉 for N = 50, 100, and 200 remains excellent for Ca = 0.1, while the small system
(N = 10) overestimates 〈N1〉 by about 23%. At Ca = 0.05, the results for N = 50 and
100 differ by only 4.5%, while the small system (N = 10) overpredicts 〈N1〉 almost
1.5-fold. The results for N = 100 and 200 remain in a close agreement for a smaller
capillary number of Ca = 0.0375 (figure 8b). Except for small Ca, the positive first
normal stress difference is comparable to the shear stress in magnitude.

For the second normal stress difference, 〈N2〉, the N-dependence may be most
complicated and non-monotonic (figure 8c). At Ca = 0.3, the N = 10 approximation
underestimates |〈N2〉| by about 16% compared to the result for N = 100. For
Ca = 0.1, in contrast, the small system (N = 10) overpredicts |〈N2〉| by about 14%,
compared to the result for N = 200; these deviations exceed the statistical errors.
Although the convergence is less obvious in figure 7(c), we note that the discrepancy
between 〈N2〉 for N = 100 and 200 is within 0.025 (and less than 1.5% of the
shear stress 〈µ∗〉), while the difference between the results for N = 10 and 200 is
observed to reach 0.09. Unfortunately, at Ca → 0, 〈N2〉 is almost inevitably subject
to some relatively large statistical error, which complicates the analysis. Nevertheless,
the results in figure 8(c) confirm the importance of using large systems (N > O(102))
in rheological simulations at high concentrations. The second normal stress difference
is negative and, except for small Ca, much smaller in magnitude than the first normal
stress difference.

For matching viscosities λ = 1, we have also systematically studied the steady-
state viscometric functions 〈µ∗〉, 〈N1〉, and 〈N2〉 at other concentrations, from 30%
to 55% by volume, and different capillary numbers (figure 9a–c). Strains of 25–30
for moderate and of 30–45 for small capillary numbers were used. At c = 0.55, we
evaluated the viscosity 〈µ∗〉 only, with a statistical error of ±0.02–0.03 (except for
Ca = 0.025, see below); reliable averaging of the normal stress differences may require
even longer runs than shown in figure 10 in this case of very high concentration,
especially for small capillary numbers. At Ca > 0.05, from 1280 (for c 6 0.5) to 1500
(for c = 0.55) triangular elements per drop and second-order Runge–Kutta integration
were employed, while for Ca 6 0.0375, we used finer triangulations (N4 = 1500 for
c 6 0.5 and N4 = 2160 for c = 0.55) and the first-order Euler time integration scheme.
At 55% volume fraction, strain steps had to be small (from 0.002 for Ca = 0.025
to 0.01 for Ca = 0.2); in contrast, much larger steps could be used at c = 0.3 (from
0.0046 at Ca = 0.025 to 0.035 at Ca = 0.3). From stability considerations, at any
given concentration, the strain step obeys the scalings γ̇∆t ∼ N

−1/2
4 and, as Ca → 0,

γ̇∆t ∼ Ca, making the calculations for drops with small deformations most difficult;
for drops with large deformations, the strain step was chosen to be weakly dependent
on Ca. The effect of time integration errors on 〈µ∗〉, 〈N1〉, and 〈N2〉 is surprisingly
weak, even when the Euler scheme is used (see below). For c = 0.4 and 0.45, the
statistical errors of 〈µ∗〉, 〈N1〉, and 〈N2〉 are similar to those for c = 0.5 (see above),
but for c = 0.3 they are much smaller (within ±0.01). At c 6 0.4, the effect of the
system size is smaller than for c = 0.5 (figure 8); in particular, at c = 0.4 and λ = 1,
the results 〈µ∗〉 = 1.577± 0.006, 〈N1〉 = 1.459± 0.004, and 〈N2〉 = −0.426± 0.007 for
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Figure 9. Steady-state results for the dimensionless effective viscosity (a), and first (b) and second
(c) normal stress differences at λ = 1 and different concentrations c and capillary numbers, with
N4 = 1280–2160 and N = 50–100. At c = 0.5, the results for N1 and N2 are given in figure 8.

Ca = 0.3 and 〈µ∗〉 = 2.286± 0.009, 〈N1〉 = 0.618± 0.017, and 〈N2〉 = −0.301± 0.005
for Ca = 0.05 obtained with N = 100 were fully reproduced, within statistical errors,
by a calculation using 50 drops. For this reason, we used N = 50 in the calculations
for figure 9 at c = 0.3 and 0.4, and N = 100 only at c > 0.45. Finally, as a check
of triangulation errors, the results µ∗ = 1.434 ± 0.006, N1 = 0.976 ± 0.005, and
N2 = −0.271 ± 0.004 for c = 0.3, λ = 1, Ca = 0.3, and N4 = 1280 compare well
with µ∗ = 1.444 ± 0.004, N1 = 0.963 ± 0.009, and N2 = −0.276 ± 0.005 obtained
using 720 triangular elements per drop. It was also found for these c, λ, and Ca
that the BPS method of paper I for normals and curvatures used in all the present
calculations improves the convergence for 〈µ∗〉 and 〈N2〉 with respect to triangulations,
but slightly slows down the convergence for 〈N1〉 compared to the best-paraboloid
algorithm (Zinchenko et al. 1997).

The most interesting observation from figure 9(a) is a sharp dependence of the
emulsion viscosity on Ca at high concentrations c = 0.45 and 0.5, so that most of
the shear thinning occurs for drops with only small deformation. This observation
poses an interesting question about the behaviour of µ∗(Ca) for small Ca. In the
phenomenological theory of simple (non-Newtonian) liquids (e.g. Astarita & Marrucci
1974), assuming certain ‘smoothness hypotheses’, the constitutive equation for slow
flows is shown to be of Rivlin–Ericksen (1955) type. This general form is, indeed,
confirmed by a small-deformation analysis of a single drop in a linear flow (Frankel
& Acrivos 1970; Barthès-Biesel & Acrivos 1973); in particular, the viscosity of
dilute emulsions turns out to be an analytical function of small Ca (and expandable
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in even powers of Ca). Unfortunately, no such microstructural justification of the
Rivlin–Ericksen theory exists for an emulsion of interacting drops. Even if the Rivlin–
Ericksen theory is applicable to highly concentrated emulsions, the range of validity
of the Rivlin–Ericksen expansion is limited to very small Ca, as suggested by our
results in figure 9(a).

Also of interest in figure 9(a) is a qualitative change in the viscosity behaviour at
very high concentrations. Namely, at Ca = 0.05 the emulsion viscosity undergoes only
a very small increase, as the concentration is increased from 50% to 55%. This change
in the viscosity is much smaller than at Ca = 0.1. The viscosity becomes a stronger
function of concentration, however, when Ca is decreased to 0.0375. This seemingly
abnormal behaviour cannot be explained by small statistical errors in our viscosity
calculations for Ca > 0.0375 (figure 10). Besides, the approximation N = 100, which is
excellent for µ∗ at c = 0.5 (figure 8a), is therefore believed to have sufficient accuracy
at c = 0.55, at least for Ca > 0.0375. Most likely, the results in figure 9(a) indicate
the existence of the phase transition in a sheared emulsion to an ordered state at high
concentrations. At c = 0.55 and Ca � 0.0375, the average viscosity 〈µ∗〉 is expected
to become an even stronger function of Ca, but it was not possible to calculate
〈µ∗〉 in this range due to ergodic difficulties: the trajectory of µ∗(γ̇t) for Ca = 0.025
(figure 10) has two distinct quasi-stationary levels (about 3.53 and 3.14), and without
further extensive calculations, it is impossible to determine the frequency of transitions
between the two probably dynamically metastable states. This two-level behaviour is
a known general phenomenon in phase transition simulations in statistical physics
and can make time averaging, unfortunately, a prohibitive task. For thermodynamical
systems of ‘hard spheres’ the phase transition to an ordered state is believed to occur
in the range 0.49 6 c 6 0.55 (e.g. Hansen & McDonald 1976). Our results indicate
that the phase transition concentrations for a sheared emulsion are similar to those
for a ‘hard-sphere’ dispersion, but not necessarily the same, and they also depend
on the capillary number; ergodic difficulties and transitional behaviour were never
observed for large deformations. To elucidate this difficult issue of phase transition,
the structural analysis of configurations would be instructive. However, to observe the
structural changes, much larger simulations (with N ∼ 103) may be required, which
were not attempted in the present work.

The positive dimensionless first normal stress difference, 〈N1〉, is also a strong
function of Ca at high concentrations and sharply decreases as Ca → 0 (figure 9b);
the asymptotic behaviour, however (in particular, the possibility of 〈N1〉 changing
sign) remains an open question. Unfortunately, accurate numerical simulations for
even smaller values of Ca than those in figure 9(b) would be quite difficult. Unlike
for the viscosity 〈µ∗〉, there are no general mechanical principles to predict the signs
of 〈N1〉 and 〈N2〉.

The dimensionless second normal stress difference, 〈N2〉, is found to be negative and
is at least several times smaller than the dimensionless shear stress 〈µ∗〉 (figure 9c).
Although it is quite difficult to accurately determine the slopes of 〈N2〉 vs. Ca in
figure 9(c) at small Ca due to statistical errors, the limiting values of 〈N2〉 at Ca = 0
are expected to remain negative (see also later figures). Non-zero values of 〈N2〉 at
Ca = 0 would indicate that, in physical units, the second normal stress difference is
a linear (not a quadratic) function of the shear rate |γ̇| at γ̇ → 0, which is the effect
of drop interactions; such a behaviour cannot be described by a Rivlin–Ericksen
phenomenological equation.

Loewenberg & Hinch (1996) and Loewenberg (1998) were the first to study the rheo-
logical properties of three-dimensional disordered emulsions of interacting deformable
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Figure 10. The trajectories of the dimensionless effective viscosity for c = 0.55, λ = 1 and different
Ca, with N = 100 and N4 = 1500–2160. At Ca = 0.025, an initial condition from a steady state for
a different capillary number was used; the average viscosity for this Ca could not be determined
due to ergodic difficulties. At Ca = 0.0375, an initial metastable (i.e. insufficiently well-mixed)
configuration of spheres slowed down relaxation to a steady state.

drops by numerical simulation. They used a direct, point-to-point boundary-integral
implementation, with quadratic scalings in N and N4, and considered N = 12 drops
with N4 = 320 triangular elements per drop (or N = 6 with N4 = 720) to simulate
steady-state viscometric functions at volume fractions c up to 30%. Their results
are in terms of particle stresses ΣP

12, N
P
1 , and NP

2 (denoted by Σ12, N1, and N2 in
Loewenberg & Hinch 1996) related to our µ∗, N1, and N2 by ΣP

12 = Ca(µ∗ − 1)/c,
NP

1 = Ca N1/c and NP
2 = Ca N2/c. At c = 0.3 and Ca > 0.05, our 〈ΣP

12〉, 〈NP
1 〉 and

〈NP
2 〉 (which can be derived from our figure 9) are in approximate (sometimes, very

good) agreement with those of Loewenberg & Hinch (1996) and Loewenberg (1998),
although the deviations are larger than expected for strong deformations (Ca ∼ 0.3),
reaching 20–24% for all 〈ΣP

12〉, 〈NP
1 〉 and 〈NP

2 〉. The main qualitative difference is that
our particle shear stress, 〈ΣP

12〉, is always a monotonically increasing function of Ca,
including the case of 30% volume concentration. We believe that the use of limited
triangulations in the earlier papers, in combination with a contour integration method
for curvatures and normals (which is known to contain difficulties) have slowed down
the convergence to the exact solution. At c = 0.3, the approximation N = 12 is likely
to suffice for intermediate Ca (since single-drop contributions to the particle stress
still prevail) but, nevertheless, may also have some effect at large deformations, when
the drop lengths are comparable with the size of the periodic box.

For a substantial viscosity contrast between the drops and the medium, the calcula-
tions are considerably more difficult and, at least, several times more computationally
expensive than for λ = 1. In the simulations below, we have chosen λ > 1 to demon-
strate stronger effects of the capillary number and concentration on the viscometric
functions, compared to the case of λ < 1. Figure 11 presents a typical snapshot of
our dynamical simulation with λ = 3, c = 0.55, Ca = 0.1, N = 100, and N4 = 1500
at the steady-state strain of γ̇t = 6.38; only 100 drops with centres in (0, 1)3, an initial
periodic cell, are shown. The whole simulation was done from a well-mixed state
of spherical drops at t = 0 to γ̇t ≈ 11 by the Euler scheme with a constant-strain
step γ̇∆t = 0.003. For the snapshot in figure 11, the preiterative part took 130 s
on a DEC 600au, including 5 s for normal and curvature calculations, 103 s for the
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Figure 11. A snapshot of the dynamical simulation for c = 0.55, λ = 3, Ca = 0.1, N = 100 and
N4 = 1500 at the steady-state strain of γ̇t = 6.38. The centres of 100 independent drops have been
mapped into (0, 1)3, an initial periodic cell.

inhomogeneous terms (2.5) with all overheads (tabulation of far-field derivatives etc.)
and 22 s to take part of the work (3.7) in the near-singularity subtractions out of
iterations. After that, each velocity iteration took 99 s; for the steady state, typically
five iterations per time step sufficed (with the convergence criterion as in § 2). As
for the single layer (2.5), it was crucial to validate our relatively complicated hybrid
scheme for the double-layer integrals (2.4). To this end, we compared, for the snapshot
in figure 11, the excess velocity ∆u(y) = u(y)−u∞(y) obtained by one iteration of (2.4)
at different precisions ε with ∆uex(y) = uex(y)− u∞(y) calculated in the same manner
using the standard O(N2N24) point-to-point summations for the double layer (2.4). In
all these tests, we started from the same initial approximation u(x) provided by the
previous time step, and used the same F (y) fixed from our hybrid calculation with
ε = 10−3a, since the single-layer part of our code was already validated (table 2). In
the point-to-point scheme, we used, again, the quadratic Taylor approximation from
the 91× 91× 91 mesh in V to interpolate the smooth part τ 1 of the stresslet. Table 3
presents the deviations δi(∆u, ∆uex) defined in (5.2) and the CPU times (in s) on a
DEC 600au for one iteration by the present method vs. the precision parameter ε
(§ 4), for drop partitioning into blocks (i) enabled (with a total of 179 blocks) and (ii)
disabled. The convergence (δi → 0 as ε → 0) to the point-to-point scheme validates
the double-layer part of our code. At ε = 10−3a and drop partitioning enabled (as
in dynamical simulations for figure 11), one velocity iteration by our method is 106
times faster than by the standard point-to-point scheme, even with the simplest, linear
interpolation for τ 1 in the standard method. This gain is even higher when the volume
fraction and/or drop deformation decrease.

For c = 0.45, λ = 3, and N = 100, we have studied systematically the effects of
the triangulation and time-step integration errors on the viscometric functions (with
other conditions being equal, the triangulation effects for λ = 1 are expected to be
smaller than those for λ = 3, since the double-layer integrals are most sensitive to
discretization errors). In figure 12(a), the trajectories of µ∗, N1, and N2 are shown
for Ca = 0.2 with two triangulations N4 = 1500 (solid lines) and N4 = 720 (dashed
lines) starting from the same random configuration of spherical drops. The second-
order Runge–Kutta scheme was used, with strain steps γ̇∆t = 0.016 and 0.023 for
N4 = 1500 and 720, respectively; on average, five velocity iterations per 1/2 step
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CPU CPU
ε δ1 δ2 δ3 time (s) δ1 δ2 δ3 time (s)

10−2a 1.8× 10−2 5.0× 10−3 1.3× 10−3 78 1.3× 10−2 2.4× 10−3 7.1× 10−4 101
3× 10−3a 4.3× 10−3 1.8× 10−3 5.3× 10−4 89 4.0× 10−3 1.1× 10−3 3.2× 10−4 113
10−3a 1.8× 10−3 6.8× 10−4 1.8× 10−4 99 1.6× 10−3 2.6× 10−4 8.2× 10−5 136
3× 10−4a 6.4× 10−4 2.3× 10−4 6.5× 10−5 121 6.2× 10−4 9.0× 10−5 2.7× 10−5 159
10−4a 2.2× 10−4 8.3× 10−5 2.4× 10−5 141 2.0× 10−4 3.4× 10−5 9.9× 10−6 186
10−5a 2.3× 10−5 1.0× 10−5 3.3× 10−6 194 1.9× 10−5 4.4× 10−6 2.2× 10−6 260

Table 3. The convergence of the present solution ∆u to the standard O(N2N24) solution ∆uex, as ε→ 0, in the double-layer test (one velocity
iteration) for c = 0.55, λ = 3, Ca = 0.1, N = 100, and N4 = 1500.
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Figure 12. (a) The trajectories of µ∗, N1 and N2 for c = 0.45, λ = 3, Ca = 0.2, N = 100, and two
runs N4 = 1500, γ̇∆t = 0.016 (solid lines) and N4 = 720, γ̇∆t = 0.023 (dashed lines), starting from
identical initial conditions; (b) the same as (a), but for the average values 〈µ∗〉γ̇t, 〈N1〉γ̇t and 〈N2〉γ̇t
in the strain interval [0, γ̇t].

sufficed. The coarse and fine solutions practically coincide up to γ̇t ≈ 13 for µ∗ and N2

(probably due to convergence acceleration achieved by using BPS) and up to γ̇t ≈ 5
for N1. Fortunately, the inevitable divergence of individual trajectories at large strains
does not preclude accurate calculation of the steady-state levels 〈µ∗〉, 〈N1〉, and 〈N2〉.
Indeed, the comparison of the average values 〈µ∗〉γ̇t, 〈N1〉γ̇t, and 〈N2〉γ̇t in the strain
interval [0, γ̇t] (figure 12b) between the two solutions shows much smaller differences
which do not accumulate as γ̇t→ ∞. The discrepancies between the stationary levels
for the crude and fine solutions are estimated as 0.1%, 1.7%, and 0.4% for 〈µ∗〉, 〈N1〉,
and 〈N2〉, respectively.

In a more difficult case Ca = 0.05, we have studied the effects of triangulation and
time step separately. In figure 13(a), the Euler scheme with the strain step γ̇∆t = 0.002
was used for two triangulations N4 = 1500 (solid lines) and N4 = 720 (dashed
lines). Unlike for Ca = 0.2, individual trajectories randomize quickly, and the effect
of triangulation is pronounced after just several units of strain (figure 13a). However,
the average values of µ∗, N1, and N2 in a large interval [0, γ̇t] are much less sensitive
to triangulation (figure 13b) than are the individual trajectories. As γ̇t → ∞, the
discrepancies between 〈µ∗〉γ̇t, 〈N1〉γ̇t, and 〈N2〉γ̇t for the crude and fine solutions are
estimated as 1% for µ∗ and about 2% for N1 and N2. Increasing the strain step
to 0.004 in the simulation with N4 = 720 has, surprisingly, a much smaller effect
(figure 14a, b), even though the first-order Euler scheme is seemingly crude. Moreover,
we regarded this scheme in the present simulations as the best choice at small Ca;
indeed, to be advantageous, high-order time integration schemes would require much
larger steps, prohibited by stability constraints. Finally, we considered the effect of
the precision parameter ε on dynamical simulations, both for Ca = 0.05 and 0.2, by
repeating the runs with N4 = 720 using ε = 0.003 instead of 0.001, up to strains of
10; the effect of ε on individual trajectories was much less than the effect of the time
step.

At c = 0.45, λ = 3, N = 100, and N4 = 1500, we also studied two more capillary
numbers, using Euler integration to γ̇t ∼ 22–23 with strain steps 0.005 and 0.0015 for
Ca = 0.1 and 0.025, respectively (figure 15a–c). At Ca = 0.025, unfortunately, the data
for normal stress differences are widely dispersed, with probable absolute statistical
errors in 〈N1〉 and 〈N2〉 as big as ±0.06 and ±0.04, respectively. In figure 16a–c,
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Figure 13. (a) The trajectories of µ∗, N1 and N2 for c = 0.45, λ = 3, Ca = 0.05, N = 100 and two
triangulations N4 = 1500 (solid lines) and 720 (dashed lines), with identical initial conditions and
the same Euler strain step γ̇∆t = 0.002. (b) the same as (a), but for the average values 〈µ∗〉γ̇t, 〈N1〉γ̇t
and 〈N2〉γ̇t in the interval [0, γ̇t].
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Figure 14. (a) The trajectories of µ∗, N1 and N2 for c = 0.45, λ = 3, Ca = 0.05, N = 100, N4 = 720
and two different Euler time steps γ̇∆t = 0.002 (solid lines) and 0.004 (dashed lines), with identical
initial conditions; (b) the same as (a), but for the average values 〈µ∗〉γ̇t, 〈N1〉γ̇t and 〈N2〉γ̇t in the
interval [0, γ̇t].

the steady-state viscometric functions are shown vs. Ca for λ = 1 and 3 at 45%
volume concentration. In figure 17a–c, the steady-state results for λ = 1, 2 and 5 are
compared at 30% volume concentration. Although the effect of N4 on the steady-
state results is small in all of our simulations, it was important to avoid an alternative
of using too crude triangulations; otherwise, a run may not succeed to strains large
enough for averaging. Even at c = 0.3, λ = 5 and Ca = 0.05, a run with N4 = 1280
failed after several units of strain due to divergence of velocity iterations (despite the
improvement in near-singularity subtraction, § 3), and we had to repeat the simulation
with N4 = 2160 to reach γ̇t = 20. In other runs for figure 17 at λ 6= 1, N4 = 1280 was
used. Interestingly, for λ = 5, |〈N2〉| behaves differently than for λ = 1 and 2, and is
a monotonically decreasing function of Ca. Besides, it follows from figure 17(b) that
〈N1〉, in general, is a non-monotonic function of λ > 1. For c = 0.3 and λ = 2, the
particle stresses 〈ΣP

12〉, 〈NP
1 〉 and 〈NP

2 〉, which can be derived from our figure 17(a–c),
are in approximate agreement with the results calculated previously by Loewenberg
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Figure 15. The trajectories of the dimensionless effective viscosity (a), and first (b) and second (c)
normal stress differences for c = 0.45, λ = 3, N = 100, N4 = 1500 and two capillary numbers
Ca = 0.1 (dashed lines) and 0.025 (solid lines).

(1998), with the most noticeable deviation being a 30% difference in the large value
of 〈NP

1 〉 at Ca = 0.3.
Finally, we ran some more limited dynamical simulations at c = 0.55, λ = 3,

N = 100 and N4 = 1500 for three capillary numbers of Ca = 0.15, 0.1 and 0.05
(figures 11 and 18). Smaller Ca would be very difficult to simulate. On the other hand,
a run at Ca = 0.2 could not reach a steady state due to continued elongation and,
probably, incipient breakup of individual drops. The simulated strains of γ̇t ∼ 11–15
were generally not enough for averaging N1 and N2, but allowed us to calculate the
steady-state viscosities 〈µ∗〉 = 2.96± 0.02, 3.37 ± 0.02 and 4.03 ± 0.01 for Ca = 0.15,
0.1 and 0.05, respectively. Again, the emulsion viscosity is a strong function of Ca,
showing a distinct shear-thinning behaviour due to drop deformation. Interestingly, for
the same c = 0.55 and Ca, the drops with λ = 3 experience somewhat larger average
deformation than do λ = 1 drops (in the dilute limit, the trend would be the opposite).
Increased drop deformation for λ = 3 helps to eliminate geometrical blockages and,
presumably, shift the phase transition toward smaller capillary numbers, compared
to the λ = 1 case (see figure 9a).

6. Conclusions
We have developed an efficient three-dimensional algorithm for hydrodynamical

interaction of many deformable drops subject to shear flow at small Reynolds numbers
with triply-periodic boundaries. The algorithm is a hybrid of the boundary-integral
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Figure 16. The steady-state viscometric functions (a) 〈µ∗〉, (b) 〈N1〉 and (c) 〈N2〉 for λ = 1 and 3
at 45% drop volume fraction.

and economical multipole techniques and generalizes our previous method developed
for sedimentation (Zinchenko & Davis 2000) for the case when the periodic cell
evolves in a cyclic manner. In addition to new far-field calculation techniques, a
crucial element is the method developed for near-singularity subtraction in the double-
layer integrals, allowing long-time simulations at high concentrations with substantial
viscosity contrast λ between the drops and the medium.

Using this method, long-time dynamical simulations for N = 100–200 disordered
drops in steady shear with N4 = 1000–2000 boundary elements per drop have been
performed for drop volume fractions up to 55% and viscosity ratios up to λ = 5, to
calculate the emulsion viscosity and normal stress differences by time averaging. The
use of large N is essential at high concentrations. Small systems (N ∼ 10) were found
to give particularly large errors for normal stress differences and failed to predict
a qualitatively correct behaviour of the emulsion viscosity. Since every run took
O(103–104) time steps, a direct O(N2N24) point-to-point boundary-integral method
would not be an option for these types of simulation. The present method is two
orders of magnitude faster for N ∼ 102 and N4 ∼ 103, without significant loss of
precision, making such calculations feasible.

As discussed in Zinchenko & Davis (2000), our approach, although heavily based
on multipoles, is not a ‘fast multipole method (FMM)’; in particular, the familiar
hierarchy of space decompositions by Cartesian grids (see Greengard & Rokhlin 1997
and references therein) is not used in our code. The FMM, although applicable in
principle for multipole acceleration of the boundary-integral calculations for three-
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5, respectively.
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Figure 18. The trajectories of the dimensionless effective viscosity for c = 0.55, λ = 3, N = 100,
N4 = 1500 and different capillary numbers. The Euler scheme with steps γ̇∆t = 0.002 and
0.003 is used for Ca = 0.05 and 0.1, respectively; the second-order Runge–Kutta scheme with
γ̇∆t = 5.25× 10−3 is used for Ca = 0.15.

dimensional Stokes equations, has not been yet developed to a necessary stage to
facilitate comparisons with our method in terms of performance and results.

At high concentrations, c = 0.45 and 0.5, the emulsion viscosity was found to
have a very steep gradient at small capillary numbers, so that most of the shear
thinning occurs for nearly non-deformable drops. The ratio of the second normal
stress difference to the shear stress is observed to remain O(1), as Ca → 0, which is
the effect of drop interactions; this behaviour could not be described by a hierarchy
of phenomenological Rivlin–Ericksen constitutive equations at Ca→ 0. We have also
found that the positive first normal stress difference scaled with the shear rate is a
strong monotonically increasing function of Ca at small Ca. For Ca → 0, accurate
boundary-integral calculations, even accelerated by multipoles, would be prohibitively
expensive.

Our results for viscometric functions also indicate the possible presence of a phase-
transition phenomenon in a sheared emulsion at volume fractions of about 50–55%
and small capillary numbers Ca 6 0.05 at λ = 1. Higher viscosity ratio λ = 3 is
expected to shift the phase transition towards smaller capillary numbers. To observe
structural changes, however, even larger systems (N ∼ 103) may be required, which
were not investigated in the present work.

The present method and calculations can be extended in several ways. Time-
dependent shear flow, or moderately polydisperse emulsions, would be the most
straightforward generalizations. Also, an insoluble surfactant or thermocapillary ef-
fects could be incorporated using boundary-integral desingularization procedures
developed for pairwise thermocapillary interactions (Rother, Zinchenko & Davis
2001). Simulation of the rheology of dense emulsions with an arbitrary history of
deformation remains a major challenge.

Note that we advocate using gap-non-adaptive meshes with fixed topology in the
present simulations, even at high drop volume fractions. Indeed, the existence of
multiple near-contact zones around a drop, and an appreciable size of each zone can
easily eliminate the advantages of gap adaptivity. This approach, however, is expected
to have limitations in the most difficult ranges of very small (but finite) Ca, or high
viscosity ratios λ > O(10), when the solution is more lubrication sensitive.

Instead of partitioning of elongated drops into compact blocks in our method, it
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may be more advantageous for N � 1 and large deformations to consider minimal
spheroidal shells around drops and then use the tool of spheroidal harmonics; some
encouraging related progress has been made recently in calculating the effective con-
ductivity and stiffness of solid suspensions of disks by spheroidal harmonics (Kushch
& Sangani 2000a, b). This prospective improvement of our multidrop technique is
currently being investigated.

This work was supported by the National Aeronautics and Space Administration.
Special thanks are extended to Mike Rother and Yingyuan Wu for assistance with
some of the figures.

Appendix A. Mesh stabilization algorithm
A familiar difficulty in three-dimensional boundary-integral calculations for de-

formable drops is dynamical mesh degradation, namely if the collocation nodes are
simply advected with the fluid velocity, or with the surface normal velocity, an ini-
tially regular unstructured mesh of triangles on a surface becomes highly irregular
and invalid after a short simulation time. ‘Passive mesh stabilization’ (Zinchenko et
al. 1997, 1999) is a family of methods to prevent mesh degradation by constructing
an additional global tangential field on each surface Sα separately from the solution
of a variational problem. In the present version, at any instant of time, the vertex
velocities V i = dxi/dt to be used in the shape updates are required to minimize

F =
∑
xij

1

||xij ||4
[

d

dt
||xij ||2

]2

+ α
∑
4

1

C24

(
dC4
dt

)2

(A 1)

under the constraints V i · n(xi) = qi, where the normal velocities qi = u(xi) · n(xi) are
given by the solution of the boundary-integral equations. The summations in (A 1)
are over all mesh edges xij = xj − xi (with i < j) on Sα and over all mesh triangles 4
on Sα,

C4 = S4/(a2 + b2 + c2) (A 2)

is the ‘compactness’ of triangle 4 with area S4 and sides a, b, and c, and α = O(1)
is a numerical factor set to 2 in the present calculations. The first term in (A 1)
prevents the internode distances from becoming irregular in long-time simulations
(as in the simplest passive mesh stabilization scheme of Zinchenko et al. 1997), while
the second term in (A 1) resists mesh triangle degeneration and extends mesh quality
to larger deformations. By the chain rule, F can be expressed as a quadratic function
of {V i} and minimized by conjugate gradient iterations (Zinchenko et al. 1997). The
minimization process terminates once Fν −Fν+1 < δFν+1 for two successive iterations
Fν and Fν+1, with δ typically set to 10−5. The main difference of (A 1) from the
minimizing function (5.1) of paper I is the absence of curvature adaptation in (A 1),
which was justified in the present calculations with not too large deformations. This
simplification greatly speeds up passive mesh stabilization; additional expenses in
minimizing (A 1) for all drops Sα are less than 5–6% even for λ = 1.

Appendix B. The far-field part
To facilitate calculations of the derivatives ∂n+ν,m+µ gk`(Rγδ) etc. in (4.14)–(4.15) at

each time step, it is helpful to introduce an auxiliary Green function G2(x) and the
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corresponding pressure q2(x):

G1(x) =
∑

0<k2
1+k2

2+k2
363

G0(x− P(k)) + G2(x), (B 1a)

q1(x) =
∑

0<k2
1+k2

2+k2
363

q0(x− P(k)) + q2(x). (B 1b)

Here, P(k) = k1e1 + k2e2 + k3e3 is a lattice point with integer ki. Since G2 and q2 are
obtained from G(x) and q(x) by subtracting the free-space contributions from the
first 27 images |ki| 6 1, these functions are very smooth in the periodic cell V : {x =
ξ1e1 +ξ2e2 +ξ3e3, |ξi| 6 1/2}. The derivatives ∂n,mG2(x) and ∂n,mq2(x) are tabulated at
each time step to a sufficient order ntab(n1, n2, n3) on a mesh x = hn1e1 +hn2e2 +hn3e3,
with h = 0.5/NT and the integers ni in the range −NT 6 n1 6 NT , 0 6 n2, n3 6 NT ;
due to smoothness of G2 and q2, small values of NT = 6–7 sufficed for all applications,
even for a high order of ntab. Fast tabulation of ∂n,mG2 and ∂n,mq2 is based on Ewald-
like forms:

G(x) =
I

4πD1/2

− 1

4π3/2

∑
k

∫ ∞
π1/2

exp{−t2[x− P(k)]2}{I + 2t2[x− P(k)][x− P(k)]} dt

− 1

4π2D1/2

∑
k

′
{
I − πQ(k)Q(k)

[
1 +

1

πQ2(k)

]}
exp

[−πQ2(k)− 2πiQ(k) · x]
Q2(k)

,

(B 2a)

q(x) = − x

D1/2
− 1

π3/2

∑
k

[x− P(k)]

∫ ∞
π1/2

exp{−t2[x− P(k)]2}t2 dt

− i

2πD1/2

∑
k

′Q(k) exp
[−πQ2(k)− 2πiQ(k) · x]

Q2(k)
. (B 2b)

The first sums in (B 2a, b) are over all lattice points P(k) in the physical space,
the second sums are over the reciprocal (wave-space) lattice points Q(k) = k1E

1 +
k2E

2 + k3E
3 (where E i is the basis contravariant to ei and ki are integers) excluding

k1 = k2 = k3 = 0; a constant has been added to zero the average of G over a
periodic cell. For a particular lattice (2.1), E1 = e1 − γeo2, E2 = eo2, E

3 = eo3 and
D = det ||ei · ej || = 1. Expressions (B 2) follow from Hasimoto (1959); Beenakker’s
(1986) approach, although popular, gives slower convergent and more cumbersome
series less amenable in calculating high-order derivatives. To obtain Ewald-like forms
for G2 and q2, the upper integration limits in (B 2a, b) are replaced by zero for
k2

1+k2
2+k2

3 6 3. Using special algebraic properties of (B 2a, b) and joining contributions
from physical and wave spaces, calculations of ∂n,mG2(x) and ∂n,mq2(x) to order ntab

can be made in ≈ 13 n2
tab real floating point multiplications per lattice point and

do not require standard error or complementary error functions (Appendix C); for
a typical number of lattice points ∼ 170–180 in each sum (B 2a–b) and ntab = 10,
NT = 6, tabulation of ∂n,mG2(x) and ∂n,mq2(x) takes only about 4 s on a DEC 600au
workstation.
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To evaluate ∂n,mG1(Rγδ) and ∂n,mq1(Rγδ), the minimal vector Rγδ is shifted periodi-
cally to the new position R∗γδ ∈ V (usually R∗γδ = Rγδ). Obviously,

G1

(
Rγδ

)
=

∑
06k2

1+k2
2+k2

363

′
Go(R

∗
γδ − P(k)) + G2(R

∗
γδ), (B 3a)

q1(Rγδ) =
∑

06k2
1+k2

2+k2
363

′
qo(R

∗
γδ − P(k)) + q2(R

∗
γδ), (B 3b)

where the terms (k1, k2, k3) with R∗γδ −P(k) = Rγδ are excluded from the summations.

The derivatives ∂n,mGo(R
∗
γδ − P(k)) and ∂n,mqo(R

∗
γδ − P(k)) are calculated directly by

a special technique at a cost of only ≈ 3.5 n2
tab real floating point multiplications for

each of 26 images in the sums (B 3a, b) (Appendix D). Additional terms ∂n,mG2(R
∗
γδ)

and ∂n,mq2(R
∗
γδ) are evaluated by the symmetry properties of G2 and q2 and table

interpolation: the vector R∗γδ = ξiei is mapped onto a new position R∗∗γδ in the tabulated

region |ξ1| 6 1/2, 0 6 ξ2, ξ3 6 1/2 by x ← −x and/or ξ3 ← −ξ3 transformations,
and second- or third-order Taylor expansions from the node xo nearest to R∗∗γδ is used
(cf. (3.81) of paper I):

∂n,m
[
G2(x)− 1

2
q2(x)x

]
x=R∗γδ

=
∑
ν6νE

ν∑
µ=−ν

∂n+ν,m+µ[G2(x)− 1
2
q2(x)x]x=xoZν,µ(R

∗∗
γδ − xo), (B 4a)

∂n,mq2

(
R∗γδ
)

=
∑
ν6νE

ν∑
µ=−ν

∂n+ν,m+µq2(R
∗
γδ)Zν,µ(R

∗∗
γδ − xo) (B 4b)

(where νE = 2 or 3), which completes the task of calculating the derivatives in (4.14).
When λ 6= 1, the necessary derivatives of the stresslet tks` and of the associated

pressure q̃(k,s)
1 in (4.15) can be expressed via ∂ν ′ , µ′g(Rγδ) and ∂ν ′ , µ′q1(Rγδ) (see paper I):

∂ν,µq̃
(1,s)
1 = (∂ν+1,µ+1 − ∂ν+1,µ−1)q

(s)
1 , (B 5a)

∂ν,µq̃
(2,s)
1 = i(∂ν+1,µ+1 + ∂ν+1,µ−1)q

(s)
1 , (B 5b)

∂ν,µq̃
(3,s)
1 = 2∂ν+1,µq

(s)
1 , (B 5c)

∂ν,µtks`(x) = −δks∂ν,µq(`)
1 + 1

2
δk`∂ν,µq

(s)
1 + 1

2
δs`∂ν,µq

(k)
1

+∂ν,µDkgs` + ∂ν,µDsgk` − δks∂ν,µx`, (B 5d)

∂ν,µD1gs` = 1
2
[∂ν+1,µ+1 − ∂ν+1,µ−1]gs`, (B 6a)

∂ν,µD2gs` = 1
2
i[∂ν+1,µ+1 + ∂ν+1,µ−1]gs`, (B 6b)

∂ν,µD3gs` = ∂ν+1,µgs`. (B 6c)

The far-field truncation bounds ν + n 6 ν∗ff(δ, γ) for (4.14), ν + n 6 ν̃∗ff for (4.15) and
the order of interpolation νE allow one to determine the necessary order ntab (n1, n2,
n3) of tabulating the derivatives ∂n,mG2 and ∂n,mq2 for every mesh point (n1, n2, n3).

Although (4.15) can be used directly to accumulate contributions of all blocks Bγ 6⊂
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Sα 3 y to the coefficients before Zn,m(Rδ) and RδZn,m(Rδ) for pointwise calculations, it
is more advantageous to transform (4.15) first to a more efficient form. Substituting
(B 5)–(B 6) into (4.15) yields

∞∑
ν=0

ν∑
µ=−ν

[
D̃

(γ)
ν,µ,k,s∂n+ν,m+µtks`(Rγδ) + 1

2
Ẽν,µ,k,s,`∂n+ν,m+µq̃

(ks)
1 (Rγδ)

]

=

∞∑
ν=0

ν∑
µ=−ν
{Ê(γ)

ν,µ,k,`∂n+ν,m+µq
(k)
1 (Rγδ) + D̂

(γ)
ν,µ,k∂n+ν,m+µgk`(Rγδ)

−D̃ν,µ,k,k∂n+ν,m+µ[q
(`)
1 (Rγδ) + (Rγδ)`]} (B 7)

and
∞∑
ν=0

ν∑
µ=−ν

D̃
(γ)
ν,µ,k,s∂n+ν,m+µq̃

(ks)
1 (Rγδ) =

∞∑
ν=0

ν∑
µ=−ν

D̂
(γ)
ν,µ,k∂n+ν,m+µq

(k)
1 (Rγδ), (B 8)

where

Ê
(γ)
ν,µ,k,` = 1

2
(Ẽν−1,µ−1,1,k,` + iẼ(γ)

ν−1,µ−1,2,k,` − Ẽ(γ)
ν−1,µ+1,1,k,`

+ iẼ(γ)
ν−1,µ+1,2,k,`) + Ẽ

(γ)
ν−1,µ,3,k,` + D̃

(γ)
ν,µ,`,k (B 9)

and

D̂
(γ)
ν,µ,k = D̃

(γ)
ν−1,µ−1,1,k + iD̃(γ)

ν−1,µ−1,2,k − D̃(γ)
ν−1,µ+1,1,k + iD̃(γ)

ν−1,µ+1,2,k + 2D̃(γ)
ν−1,µ,3,k (B 10)

(assuming that Ẽ(γ)
ν ′ , µ′ and D̃

(γ)
ν ′ , µ′ are non-zero only for |µ′| 6 ν ′). The new Ê− and

D̂− coefficients are precalculated for each block on every iteration. This improvement
of (4.15) (overlooked in paper I) speeds up the far-field part of the double-layer
calculations about two-fold.

For very large systems (several hundred drops and more), only low-order derivatives
of G1 and q1 suffice, so it is unnecessary to subtract the contributions of 26 images
0 < k2

1 + k2
2 + k2

3 6 3 in (B 1), which would further accelerate the far-field part of the
code. Besides, for very large N, it is advantageous to disable drop partitioning into
blocks, even for relatively strong deformations. It turns out, after all optimizations,
that the far-field part with O(N2) scaling is fast compared to the rest of the code, and
the whole algorithm scales practically linearly in N, as long as N < 1000 (assuming
that N4 = O(103) boundary elements per drop are used). Only for N � 1000, would
a quadratic scaling of the present algorithm be pronounced. However, regardless of
the method, it may not be possible to dynamically simulate such large concentrated
systems of deformable three-dimensional drops with adequate resolution N4 ∼ 103

on present-day computers. For this reason, other approaches designed to rigorously
eliminate the O(N2) scaling, in particular, the FMM scheme (e.g. Greengard &
Rokhlin 1997; Sangani & Mo 1996; Popov & Power 2001) were not incorporated in
our algorithm.

Appendix C. Fast differentiation of Ewald-like forms
Let

Sµp,ν(x) =
∑
k

′|Q(k)|p(Q1 − iQ2)
µQ

ν−µ
3 exp[−πQ2(k)− 2πiQ(k) · x] (C 1)
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for µ > 0 and Sµp,ν(x) = (−1)µS
−µ
p,ν (−x) for µ < 0, where for brevity, Q(k) = (Q1, Q2, Q3)

in Cartesian coordinates. An economical direct way of calculating all the derivatives
∂ν,µ of the wave-space parts of Green’s function (B 2a) and pressure (B 2b) to order
ν = ntab for a given x is to compute first the lattice sums (C1):

S
µ
−4,ν , S

µ
−2,ν for 0 6 µ 6 ν 6 ntab + 2,

S
µ
0,ν for 0 6 µ 6 ν 6 ntab,

S
µ
2,ν for 0 6 µ 6 ν 6 ntab − 2,

 (C 2)

at a O(n2
tab)-cost per lattice point, and additional sums

S−1−4,ν , S
−1−2,ν for 1 6 ν 6 ntab + 2,

S−1
0,ν for 1 6 ν 6 ntab,

S−2−4,ν , S
−2−2,ν for 2 6 ν 6 ntab + 2,

 (C 3)

at a O(ntab)-cost per lattice point. Since

∂ν,µ exp[−2πiQ(k) · x] = (−2πi)ν(Q1 − iQ2)
µQ

ν−µ
3 exp[−2πiQ(k) · x], (C 4)

all the necessary derivatives of the wave-space parts of (B 2a, b) can be expressed in
terms of (C2)–(C3). For example, the product Q1Q2 in (B 2a) is handled for µ > 2 as

Q1Q2(Q1 − iQ2)
µQ

ν−µ
3 = − i

4
[(Q1 + iQ2)

2 − (Q1 − iQ2)
2](Q1 − iQ2)

µQ
ν−µ
3

= − i

4
{[Q2(k)− Q2

3](Q1 − iQ2)
µ−2Q

ν−µ
3 − (Q1 − iQ2)

µ+2Q
ν−µ
3 }. (C 5)

By expressing Q1 and Q2 via Q1 + iQ2 and Q1 − iQ2, similar transformations are
applied to other products QjQm(Q1 − iQ2)

µQ
ν−µ
3 and Qj(Q1 − iQ2)

µQ
ν−µ
3 . Also, the

calculations of (C1) are accelerated by factorizing the exponents (cf. Zinchenko 1994).
For calculating the derivatives ∂ν,µ of the physical-space contributions to G2 and q2

to order ν = ntab, it is sufficient to compute the lattice sums∑
k

(y1− iy2)
µJµν for 0 6 µ 6 ν 6 ntab +1,∑

k

(y1− iy2)
µJµν Pm(k) for 0 6 µ 6 ν 6 ntab +1, m= 1, 2, 3,∑

k

[(y1− iy2)
µJ

µ+1
ν+1 y2 + iµ(y1− iy2)

µ−1Jµν ] for 0 6 µ 6 ν 6 ntab,∑
k

[(y1− iy2)
µJ

µ+1
ν+1 y2 + iµ(y1− iy2)

µ−1Jµν ]Pm(k) for 0 6 µ 6 ν 6 ntab, m= 1, 2.


(C 6)

Here, for brevity, y = x − P(k), indices 1, 2, and 3 denote Cartesian coordinates,
and

Jµν =
2µ+1

π1/2

∫
tν+µHν−µ(y3t) exp(−t2y2) dt, (C 7)

with Hn(ξ) being the Hermite polynomial of degree n; integrations in (B 7) and below
are performed from π1/2 to ∞ for k2

1 + k2
2 + k2

3 > 3 and from π1/2 to zero otherwise.
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Recurrent relations (Zinchenko 1994)

Jν+1
ν+1 =

1

y2
[2(2π)ν exp(−πy2) + (2ν + 1)Jνν ], J

µ
ν+1 = y3J

µ+1
ν+1 − (ν − µ)Jµ+1

ν , (C 8)

are applied for fast calculation of Jµν at y 6= 0; for Joo at k2
1 + k2

2 + k2
3 > 3, expensive

computation of the complementary error function is avoided altogether by factoring
out exp(−πy2)/(πy2) and pretabulating the smooth remaining part (Zinchenko 1994).

To link the derivatives ∂ν,µ of the physical-space parts of G2 and q2 to the lattice
sums (C 6), we note that

(G2)nm(x)− 1
2
(q2)n(x)xm = − 1

4π3/2

∑
k

∫
exp(−t2y2)[δnm − 2t2ynPm(k)] dt+ · · · , (C 9)

where only integral contributions are shown. Using (3.76) of paper I yields

∂ν,µ

∫
exp(−t2y2) dt =

π1/2

2
(−1)ν(y1 − iy2)

µJµν ,

∂ν,µ(y2

∫
t2 exp(−t2y2) dt) =

π1/2

4
(−1)ν[(y1 − iy2)

µy2J
µ+1
ν+1 + iµ(y1 − iy2)

µ−1Jµν ],

∂ν,µ(y3

∫
t2 exp(−t2y2) dt) =

π1/2

4
(−1)ν(y1 − iy2)

µJ
µ
ν+1,

∂ν,µ[(y1 − iy2)

∫
t2 exp(−t2y2) dt] =

π1/2

4
(−1)ν(y1 − iy2)

µ+1J
µ+1
ν+1 .


(C 10)

Since G2 is a symmetric tensor, the lattice sums (C 6) and relations (C 10) allow all
the derivatives ∂ν,µ of the physical-space parts of G2 and q2 to be calculated.

Appendix D. Fast differentiation of free-space Green functions
To calculate the derivatives ∂ν,µ of the sums (B 3a, b) to order ν = νmax, it is sufficient

to compute the lattice sums∑
06k2

1+k2
2+k2

363

′
Uµ
ν (x− P(k)), 0 6 µ 6 ν 6 νmax + 1, (D 1a)

∑
06k2

1+k2
2+k2

363

′
[x− P(k)]2Uµ

ν (x− P(k)), 0 6 µ 6 ν 6 νmax + 2, (D 1b)

where

Uµ
ν (r) = (D1 − iD2)

µD
ν−µ
3

(
1

r

)
, Di =

∂

∂ri
. (D 2)

Fast computations of (D 1a, b) are performed through recurrent relations:

U
j
j = −(2j − 1)

(r1 − ir2)

r2
U
j−1
j−1 , U

µ
j = −(2j − 1)

r3

r2
U
µ
j−1 − [(j − 1)2 − µ2]

r2
U
µ
j−2. (D 3)

We also note that

−8π∂ν,µ (Go)km (r) = δk,m∂ν,µ

(
1

r

)
− rm∂ν,µDk

(
1

r

)
−µ(δm,1 − iδm,2)∂ν−1,µ−1Dk

(
1

r

)
− (ν − µ)δ3,m∂ν−1,µDk

(
1

r

)
(D 4)
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and ∂ν,µqo(r) = (4π)−1∂ν,µ∇(1/r). Expressing D1 and D2 via D1 + iD2, D1 − iD2 and
using harmonicity of 1/r, all the derivatives ∂ν,µ of the sums (B 3a, b) can be linked
to the lattice sums (D 1a, b).
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